Cargando…
Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning
Background: Finding reliable diagnostic markers for gastric cancer (GC) is important. This work uses machine learning (ML) to identify GC diagnostic genes and investigate their connection with immune cell infiltration. Methods: We downloaded eight GC-related datasets from GEO, TCGA, and GTEx. GSE139...
Autores principales: | Xie, Rongjun, Liu, Longfei, Lu, Xianzhou, He, Chengjian, Li, Guoxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845288/ https://www.ncbi.nlm.nih.gov/pubmed/36685898 http://dx.doi.org/10.3389/fgene.2022.1067524 |
Ejemplares similares
-
Bioinformatic analysis and machine learning to identify the diagnostic biomarkers and immune infiltration in adenomyosis
por: Liu, Dan, et al.
Publicado: (2023) -
Identification of effective diagnostic biomarker and immune cell infiltration characteristics in acute liver failure by integrating bioinformatics analysis and machine-learning strategies
por: Yuan, Mengqin, et al.
Publicado: (2022) -
Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning
por: Liu, Jinya, et al.
Publicado: (2022) -
Identification of Hub Genes and Immune Infiltration in Psoriasis by Bioinformatics Method
por: Su, Wenxing, et al.
Publicado: (2021) -
Bioinformatics searching of diagnostic markers and immune infiltration in polycystic ovary syndrome
por: Yao, Xinrui, et al.
Publicado: (2022)