Cargando…
Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak
Long-read sequencing has demonstrated great potential for characterizing all types of structural variations (SVs). However, existing algorithms have insufficient sensitivity and precision. To address these limitations, we present DeBreak, a computational method for comprehensive and accurate SV disc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845341/ https://www.ncbi.nlm.nih.gov/pubmed/36650186 http://dx.doi.org/10.1038/s41467-023-35996-1 |
Sumario: | Long-read sequencing has demonstrated great potential for characterizing all types of structural variations (SVs). However, existing algorithms have insufficient sensitivity and precision. To address these limitations, we present DeBreak, a computational method for comprehensive and accurate SV discovery. Based on alignment results, DeBreak employs a density-based approach for clustering SV candidates together with a local de novo assembly approach for reconstructing long insertions. A partial order alignment algorithm ensures precise SV breakpoints with single base-pair resolution, and a k-means clustering method can report multi-allele SV events. DeBreak outperforms existing tools on both simulated and real long-read sequencing data from both PacBio and Nanopore platforms. An important application of DeBreak is analyzing cancer genomes for potentially tumor-driving SVs. DeBreak can also be used for supplementing whole-genome assembly-based SV discovery. |
---|