Cargando…
One-class machine learning classification of skin tissue based on manually scanned optical coherence tomography imaging
We investigated a method for automatic skin tissue characterization based on optical coherence tomography (OCT) imaging. We developed a manually scanned single fiber OCT instrument to perform in vivo skin imaging and tumor boundary assessment. The goal is to achieve more accurate tissue excision in...
Autores principales: | Liu, Xuan, Ouellette, Samantha, Jamgochian, Marielle, Liu, Yuwei, Rao, Babar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845382/ https://www.ncbi.nlm.nih.gov/pubmed/36650283 http://dx.doi.org/10.1038/s41598-023-28155-5 |
Ejemplares similares
-
Manually scanned single fiber optical coherence tomography for skin cancer characterization
por: Chuchvara, Nadiya, et al.
Publicado: (2021) -
Identification of skin signs in human-trafficking survivors
por: Rambhatla, Raaga, et al.
Publicado: (2021) -
Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging
por: Pande, Paritosh, et al.
Publicado: (2016) -
Machine learning classification of multiple sclerosis in children using optical coherence tomography
por: Ciftci Kavaklioglu, Beyza, et al.
Publicado: (2022) -
Cutaneous adverse effects associated with LAG‐3 inhibitor use in cancer treatment: A systematic review
por: Ghani, Hira, et al.
Publicado: (2023)