Cargando…
A machine learning-based approach to ERα bioactivity and drug ADMET prediction
By predicting ERα bioactivity and mining the potential relationship between Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) attributes in drug research and development, the development efficiency of specific drugs for breast cancer will be effectively improved and the misjudgment r...
Autores principales: | An, Tianbo, Chen, Yueren, Chen, Yefeng, Ma, Leyu, Wang, Jingrui, Zhao, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845410/ https://www.ncbi.nlm.nih.gov/pubmed/36685926 http://dx.doi.org/10.3389/fgene.2022.1087273 |
Ejemplares similares
-
MADS-Box Gene Classification in Angiosperms by Clustering and Machine Learning Approaches
por: Chen, Yu-Ting, et al.
Publicado: (2019) -
ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning
por: Jiang, Dejun, et al.
Publicado: (2020) -
A Machine Learning Method for Drug Combination Prediction
por: Li, Jiang, et al.
Publicado: (2020) -
Application of Machine Learning for Drug–Target Interaction Prediction
por: Xu, Lei, et al.
Publicado: (2021) -
Using Machine Learning Approaches to Predict Target Gene Expression in Rice T-DNA Insertional Mutants
por: Chien, Ching-Hsuan, et al.
Publicado: (2021)