Cargando…
A classification method of gastric cancer subtype based on residual graph convolution network
Background: Clinical diagnosis and treatment of tumors are greatly complicated by their heterogeneity, and the subtype classification of cancer frequently plays a significant role in the subsequent treatment of tumors. Presently, the majority of studies rely far too heavily on gene expression data,...
Autores principales: | Liu, Can, Duan, Yuchen, Zhou, Qingqing, Wang, Yongkang, Gao, Yong, Kan, Hongxing, Hu, Jili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845413/ https://www.ncbi.nlm.nih.gov/pubmed/36685956 http://dx.doi.org/10.3389/fgene.2022.1090394 |
Ejemplares similares
-
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis
por: Li, Xiao, et al.
Publicado: (2022) -
Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA–Disease Associations Based on Multi-Source Data
por: Li, Guanghui, et al.
Publicado: (2022) -
CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction
por: Zeng, Daojian, et al.
Publicado: (2021) -
Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction
por: Fan, Kunjie, et al.
Publicado: (2023)