Cargando…

Antiproliferative Action of Methanolic Petiole Extract of Eichhornia Crassipes on Human Prostate Adenocarcinoma Cell Line: An In Vitro Study

Background: An increasing number of people are turning to herbal medicines in their search for innovative pharmaceuticals since they are effective treatments for a wide variety of conditions and traditional herbs are rich in bioactive chemicals. In this study, we looked at whether or not a petiole e...

Descripción completa

Detalles Bibliográficos
Autores principales: P, Noufal K, B, Rajesh, Nair, Sujith S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845536/
https://www.ncbi.nlm.nih.gov/pubmed/36660523
http://dx.doi.org/10.7759/cureus.32616
Descripción
Sumario:Background: An increasing number of people are turning to herbal medicines in their search for innovative pharmaceuticals since they are effective treatments for a wide variety of conditions and traditional herbs are rich in bioactive chemicals. In this study, we looked at whether or not a petiole extract of Eichhornia crassipes preserved in methanol inhibited the proliferation of prostate cancer (PC3) cell lines. Materials and methods: Lakes in Ezhikkara, Ernakulum, Kerala, were the source of E. crassipes. Soxhlet extraction was used to create the extract. 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability of methanolic petiole extract at various concentrations. Mean and standard deviation was used to determine absorbance scores. Utilizing probit analysis, we determined the IC50 value. The descriptive statistics to measure the percent of viable cells along with the regression equation were calculated using SPSS. Results: It has been shown that the methanol extract significantly impacted PC3 cell lines' capacity to survive. It was also determined that increasing the medication concentration resulted in a decrease in cell viability. The percentage of living cells was measured after being exposed to methanol extracts at concentrations of 12.5 μg/ml, 25 μg/ml, 50 μg/ml, 100 μg/ml, and 200 μg/ml, and found to be 95.13, 85.88, 76.12, 64.33, and 53.62 percent, respectively. With IC50 values of 199.488 g/ml, it was shown that methanolic petiole extracts of E. crassipes are cytotoxic. Using probit analysis, we determined that the regression equation is y = -0.2051x + 90.915, with an R2 value of 0.893. Conclusion: As a result of its chemotherapeutic properties, the E. crassipes petiole extract has the potential to be employed in therapeutic applications, with the ultimate goal of bettering prostate cancer management practices and clinical results by drastically lowering cell viability. The study's results may pave the way for fresh chemotherapeutic approaches to be developed for the treatment of androgen-independent prostate cancer.