Cargando…

Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development

INTRODUCTION: We sought to explore biomarkers of coronary atherosclerosis in an unbiased fashion. METHODS: We analyzed 665 patients (mean ± SD age, 56 ± 11 years; 47% male) from the GLOBAL clinical study (NCT01738828). Cases were defined by the presence of any discernable atherosclerotic plaque base...

Descripción completa

Detalles Bibliográficos
Autores principales: Voros, Szilard, Bansal, Aruna T., Barnes, Michael R., Narula, Jagat, Maurovich-Horvat, Pal, Vazquez, Gustavo, Marvasty, Idean B., Brown, Bradley O., Voros, Isaac D., Harris, William, Voros, Viktor, Dayspring, Thomas, Neff, David, Greenfield, Alex, Furchtgott, Leon, Church, Bruce, Runge, Karl, Khalil, Iya, Hayete, Boris, Lucero, Diego, Remaley, Alan T., Newton, Roger S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845579/
https://www.ncbi.nlm.nih.gov/pubmed/36684605
http://dx.doi.org/10.3389/fcvm.2022.960419
_version_ 1784870933150826496
author Voros, Szilard
Bansal, Aruna T.
Barnes, Michael R.
Narula, Jagat
Maurovich-Horvat, Pal
Vazquez, Gustavo
Marvasty, Idean B.
Brown, Bradley O.
Voros, Isaac D.
Harris, William
Voros, Viktor
Dayspring, Thomas
Neff, David
Greenfield, Alex
Furchtgott, Leon
Church, Bruce
Runge, Karl
Khalil, Iya
Hayete, Boris
Lucero, Diego
Remaley, Alan T.
Newton, Roger S.
author_facet Voros, Szilard
Bansal, Aruna T.
Barnes, Michael R.
Narula, Jagat
Maurovich-Horvat, Pal
Vazquez, Gustavo
Marvasty, Idean B.
Brown, Bradley O.
Voros, Isaac D.
Harris, William
Voros, Viktor
Dayspring, Thomas
Neff, David
Greenfield, Alex
Furchtgott, Leon
Church, Bruce
Runge, Karl
Khalil, Iya
Hayete, Boris
Lucero, Diego
Remaley, Alan T.
Newton, Roger S.
author_sort Voros, Szilard
collection PubMed
description INTRODUCTION: We sought to explore biomarkers of coronary atherosclerosis in an unbiased fashion. METHODS: We analyzed 665 patients (mean ± SD age, 56 ± 11 years; 47% male) from the GLOBAL clinical study (NCT01738828). Cases were defined by the presence of any discernable atherosclerotic plaque based on comprehensive cardiac computed tomography (CT). De novo Bayesian networks built out of 37,000 molecular measurements and 99 conventional biomarkers per patient examined the potential causality of specific biomarkers. RESULTS: Most highly ranked biomarkers by gradient boosting were interleukin-6, symmetric dimethylarginine, LDL-triglycerides [LDL-TG], apolipoprotein B48, palmitoleic acid, small dense LDL, alkaline phosphatase, and asymmetric dimethylarginine. In Bayesian analysis, LDL-TG was directly linked to atherosclerosis in over 95% of the ensembles. Genetic variants in the genomic region encoding hepatic lipase (LIPC) were associated with LIPC gene expression, LDL-TG levels and with atherosclerosis. DISCUSSION: Triglyceride-rich LDL particles, which can now be routinely measured with a direct homogenous assay, may play an important role in atherosclerosis development. CLINICAL TRIAL REGISTRATION: GLOBAL clinical study (Genetic Loci and the Burden of Atherosclerotic Lesions); [https://clinicaltrials.gov/ct2/show/NCT01738828?term=NCT01738828&rank=1], identifier [NCT01738828].
format Online
Article
Text
id pubmed-9845579
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98455792023-01-19 Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development Voros, Szilard Bansal, Aruna T. Barnes, Michael R. Narula, Jagat Maurovich-Horvat, Pal Vazquez, Gustavo Marvasty, Idean B. Brown, Bradley O. Voros, Isaac D. Harris, William Voros, Viktor Dayspring, Thomas Neff, David Greenfield, Alex Furchtgott, Leon Church, Bruce Runge, Karl Khalil, Iya Hayete, Boris Lucero, Diego Remaley, Alan T. Newton, Roger S. Front Cardiovasc Med Cardiovascular Medicine INTRODUCTION: We sought to explore biomarkers of coronary atherosclerosis in an unbiased fashion. METHODS: We analyzed 665 patients (mean ± SD age, 56 ± 11 years; 47% male) from the GLOBAL clinical study (NCT01738828). Cases were defined by the presence of any discernable atherosclerotic plaque based on comprehensive cardiac computed tomography (CT). De novo Bayesian networks built out of 37,000 molecular measurements and 99 conventional biomarkers per patient examined the potential causality of specific biomarkers. RESULTS: Most highly ranked biomarkers by gradient boosting were interleukin-6, symmetric dimethylarginine, LDL-triglycerides [LDL-TG], apolipoprotein B48, palmitoleic acid, small dense LDL, alkaline phosphatase, and asymmetric dimethylarginine. In Bayesian analysis, LDL-TG was directly linked to atherosclerosis in over 95% of the ensembles. Genetic variants in the genomic region encoding hepatic lipase (LIPC) were associated with LIPC gene expression, LDL-TG levels and with atherosclerosis. DISCUSSION: Triglyceride-rich LDL particles, which can now be routinely measured with a direct homogenous assay, may play an important role in atherosclerosis development. CLINICAL TRIAL REGISTRATION: GLOBAL clinical study (Genetic Loci and the Burden of Atherosclerotic Lesions); [https://clinicaltrials.gov/ct2/show/NCT01738828?term=NCT01738828&rank=1], identifier [NCT01738828]. Frontiers Media S.A. 2023-01-04 /pmc/articles/PMC9845579/ /pubmed/36684605 http://dx.doi.org/10.3389/fcvm.2022.960419 Text en Copyright © 2023 Voros, Bansal, Barnes, Narula, Maurovich-Horvat, Vazquez, Marvasty, Brown, Voros, Harris, Voros, Dayspring, Neff, Greenfield, Furchtgott, Church, Runge, Khalil, Hayete, Lucero, Remaley and Newton. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Voros, Szilard
Bansal, Aruna T.
Barnes, Michael R.
Narula, Jagat
Maurovich-Horvat, Pal
Vazquez, Gustavo
Marvasty, Idean B.
Brown, Bradley O.
Voros, Isaac D.
Harris, William
Voros, Viktor
Dayspring, Thomas
Neff, David
Greenfield, Alex
Furchtgott, Leon
Church, Bruce
Runge, Karl
Khalil, Iya
Hayete, Boris
Lucero, Diego
Remaley, Alan T.
Newton, Roger S.
Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development
title Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development
title_full Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development
title_fullStr Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development
title_full_unstemmed Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development
title_short Bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich LDL in atherosclerosis development
title_sort bayesian network analysis of panomic biological big data identifies the importance of triglyceride-rich ldl in atherosclerosis development
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845579/
https://www.ncbi.nlm.nih.gov/pubmed/36684605
http://dx.doi.org/10.3389/fcvm.2022.960419
work_keys_str_mv AT vorosszilard bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT bansalarunat bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT barnesmichaelr bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT narulajagat bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT maurovichhorvatpal bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT vazquezgustavo bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT marvastyideanb bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT brownbradleyo bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT vorosisaacd bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT harriswilliam bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT vorosviktor bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT dayspringthomas bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT neffdavid bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT greenfieldalex bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT furchtgottleon bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT churchbruce bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT rungekarl bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT khaliliya bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT hayeteboris bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT lucerodiego bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT remaleyalant bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment
AT newtonrogers bayesiannetworkanalysisofpanomicbiologicalbigdataidentifiestheimportanceoftriglyceriderichldlinatherosclerosisdevelopment