Cargando…
A subnetwork-based framework for prioritizing and evaluating prognostic gene modules from cancer transcriptome data
Cancer prognosis prediction is critical to the clinical decision-making process. Currently, the high availability of transcriptome datasets allows us to extract the gene modules with promising prognostic values. However, the biomarker identification is greatly challenged by tumor and patient heterog...
Autores principales: | Cao, Biwei, Patel, Krupal B., Li, Tingyi, Yao, Sijie, Chung, Christine H., Wang, Xuefeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845797/ https://www.ncbi.nlm.nih.gov/pubmed/36685033 http://dx.doi.org/10.1016/j.isci.2022.105915 |
Ejemplares similares
-
Prediction-oriented prognostic biomarker discovery with survival machine learning methods
por: Yao, Sijie, et al.
Publicado: (2023) -
Unveiling targeted cell-free DNA methylation regions through paired methylome analysis of tumor and normal tissues
por: Li, Tingyi, et al.
Publicado: (2023) -
Identifying differentially regulated subnetworks from phosphoproteomic data
por: Klammer, Martin, et al.
Publicado: (2010) -
Smell Detection Agent Optimisation Framework and Systems Biology Approach to Detect Dys-Regulated Subnetwork in Cancer Data
por: Sivan, Suma L., et al.
Publicado: (2021) -
Differentially mutated subnetworks discovery
por: Hajkarim, Morteza Chalabi, et al.
Publicado: (2019)