Cargando…
An invasive ant increases deformed wing virus loads in honey bees
The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Arge...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845979/ https://www.ncbi.nlm.nih.gov/pubmed/36651030 http://dx.doi.org/10.1098/rsbl.2022.0416 |
_version_ | 1784871044689952768 |
---|---|
author | Dobelmann, Jana Felden, Antoine Lester, Philip J. |
author_facet | Dobelmann, Jana Felden, Antoine Lester, Philip J. |
author_sort | Dobelmann, Jana |
collection | PubMed |
description | The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Argentine ant (Linepithema humile), which can reach high densities and infest beehives, is associated with pathogen dynamics in honey bees. Viral loads of deformed wing virus (DWV), which has been linked to millions of beehive deaths around the globe, and black queen cell virus significantly increased in bees when invasive ants were present. Microsporidian and trypanosomatid infections, which are more bee-specific, were not affected by ant invasion. The bee virome in autumn revealed that DWV was the predominant virus with the highest infection levels and that no ant-associated viruses were infecting bees. Viral spillback from ants could increase infections in bees. In addition, ant attacks could pose a significant stressor to bee colonies that may affect virus susceptibility. These viral dynamics are a hidden effect of ant pests, which could have a significant impact on disease emergence in this economically important pollinator. Our study highlights a perhaps overlooked effect of species invasions: changes in pathogen dynamics. |
format | Online Article Text |
id | pubmed-9845979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-98459792023-01-20 An invasive ant increases deformed wing virus loads in honey bees Dobelmann, Jana Felden, Antoine Lester, Philip J. Biol Lett Community Ecology The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Argentine ant (Linepithema humile), which can reach high densities and infest beehives, is associated with pathogen dynamics in honey bees. Viral loads of deformed wing virus (DWV), which has been linked to millions of beehive deaths around the globe, and black queen cell virus significantly increased in bees when invasive ants were present. Microsporidian and trypanosomatid infections, which are more bee-specific, were not affected by ant invasion. The bee virome in autumn revealed that DWV was the predominant virus with the highest infection levels and that no ant-associated viruses were infecting bees. Viral spillback from ants could increase infections in bees. In addition, ant attacks could pose a significant stressor to bee colonies that may affect virus susceptibility. These viral dynamics are a hidden effect of ant pests, which could have a significant impact on disease emergence in this economically important pollinator. Our study highlights a perhaps overlooked effect of species invasions: changes in pathogen dynamics. The Royal Society 2023-01-18 /pmc/articles/PMC9845979/ /pubmed/36651030 http://dx.doi.org/10.1098/rsbl.2022.0416 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Community Ecology Dobelmann, Jana Felden, Antoine Lester, Philip J. An invasive ant increases deformed wing virus loads in honey bees |
title | An invasive ant increases deformed wing virus loads in honey bees |
title_full | An invasive ant increases deformed wing virus loads in honey bees |
title_fullStr | An invasive ant increases deformed wing virus loads in honey bees |
title_full_unstemmed | An invasive ant increases deformed wing virus loads in honey bees |
title_short | An invasive ant increases deformed wing virus loads in honey bees |
title_sort | invasive ant increases deformed wing virus loads in honey bees |
topic | Community Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845979/ https://www.ncbi.nlm.nih.gov/pubmed/36651030 http://dx.doi.org/10.1098/rsbl.2022.0416 |
work_keys_str_mv | AT dobelmannjana aninvasiveantincreasesdeformedwingvirusloadsinhoneybees AT feldenantoine aninvasiveantincreasesdeformedwingvirusloadsinhoneybees AT lesterphilipj aninvasiveantincreasesdeformedwingvirusloadsinhoneybees AT dobelmannjana invasiveantincreasesdeformedwingvirusloadsinhoneybees AT feldenantoine invasiveantincreasesdeformedwingvirusloadsinhoneybees AT lesterphilipj invasiveantincreasesdeformedwingvirusloadsinhoneybees |