Cargando…

Isoquercitrin restrains the proliferation and promotes apoptosis of human osteosarcoma cells by inhibiting the Wnt/β-catenin pathway

Currently, chemotherapeutic drugs are widely used for the treatment of osteosarcoma. However, many of these drugs exhibit shortcomings such as poor efficacy, high toxicity, and tolerance. Isoquercitrin (ISO) is a traditional Chinese medicine that has been proved to exert good therapeutic effects on...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Zhun, Zheng, Di, Pi, Wenfeng, Qiu, Yonglong, Xia, Kezhou, Guo, Weichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846017/
https://www.ncbi.nlm.nih.gov/pubmed/36685044
http://dx.doi.org/10.1016/j.jbo.2023.100468
Descripción
Sumario:Currently, chemotherapeutic drugs are widely used for the treatment of osteosarcoma. However, many of these drugs exhibit shortcomings such as poor efficacy, high toxicity, and tolerance. Isoquercitrin (ISO) is a traditional Chinese medicine that has been proved to exert good therapeutic effects on various tumors; however, its role in osteosarcoma has not been reported. Here, we observed that ISO exerted a marked inhibitory effect on the occurrence and development of osteosarcoma in a time- and dose-dependent manner. First, we determined that ISO significantly inhibited proliferation, induced EMT-related migration and invasion and induced apoptosis of osteosarcoma cells in vitro. Concurrently, we also observed that both β-catenin and its downstream genes (c-Myc, CyclinD1, and Survivin) were significantly down-regulated. To verify if the anti-tumor effect of ISO was related to the Wnt/β-catenin signaling pathway, we altered the protein expression level of β-catenin using recombinant lentivirus, then we observed that the effects of ISO on the proliferation, metastasis, and apoptosis of osteosarcoma cells were significantly reversed. Additionally, we used a nude mouse xenograft model and observed that ISO significantly inhibited the growth of osteosarcoma and improved the survival rate of the animal models. In conclusion, this study demonstrates that ISO can exert anti-tumor effects in part by inhibiting the Wnt/β-catenin signaling pathway, thus providing a new potential therapeutic strategy for the treatment of osteosarcoma.