Cargando…

CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells

INTRODUCTION: Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematop...

Descripción completa

Detalles Bibliográficos
Autores principales: Brault, Julie, Liu, Taylor, Liu, Siyuan, Lawson, Amanda, Choi, Uimook, Kozhushko, Nikita, Bzhilyanskaya, Vera, Pavel-Dinu, Mara, Meis, Ronald J., Eckhaus, Michael A., Burkett, Sandra S., Bosticardo, Marita, Kleinstiver, Benjamin P., Notarangelo, Luigi D., Lazzarotto, Cicera R., Tsai, Shengdar Q., Wu, Xiaolin, Dahl, Gary A., Porteus, Matthew H., Malech, Harry L., De Ravin, Suk See
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846165/
https://www.ncbi.nlm.nih.gov/pubmed/36685559
http://dx.doi.org/10.3389/fimmu.2022.1067417
_version_ 1784871101447274496
author Brault, Julie
Liu, Taylor
Liu, Siyuan
Lawson, Amanda
Choi, Uimook
Kozhushko, Nikita
Bzhilyanskaya, Vera
Pavel-Dinu, Mara
Meis, Ronald J.
Eckhaus, Michael A.
Burkett, Sandra S.
Bosticardo, Marita
Kleinstiver, Benjamin P.
Notarangelo, Luigi D.
Lazzarotto, Cicera R.
Tsai, Shengdar Q.
Wu, Xiaolin
Dahl, Gary A.
Porteus, Matthew H.
Malech, Harry L.
De Ravin, Suk See
author_facet Brault, Julie
Liu, Taylor
Liu, Siyuan
Lawson, Amanda
Choi, Uimook
Kozhushko, Nikita
Bzhilyanskaya, Vera
Pavel-Dinu, Mara
Meis, Ronald J.
Eckhaus, Michael A.
Burkett, Sandra S.
Bosticardo, Marita
Kleinstiver, Benjamin P.
Notarangelo, Luigi D.
Lazzarotto, Cicera R.
Tsai, Shengdar Q.
Wu, Xiaolin
Dahl, Gary A.
Porteus, Matthew H.
Malech, Harry L.
De Ravin, Suk See
author_sort Brault, Julie
collection PubMed
description INTRODUCTION: Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs. METHODS: We compare the two approaches for integration of IL2RG transgene for functional correction of HSPCs from patients with X-linked Severe Combined Immunodeficiency (SCID-X1 or XSCID); delivery via current clinical lentivector (LV)-IL2RG versus targeted insertion (TI) of IL2RG via homology-directed repair (HDR) when using an adeno-associated virus (AAV)-IL2RG donor following double-strand DNA break at the endogenous IL2RG locus. RESULTS AND DISCUSSION: In vitro differentiation of LV- or TI-treated XSCID HSPCs similarly overcome differentiation block into Pre-T-I and Pre-T-II lymphocytes but we observed significantly superior development of NK cells when corrected by TI (40.7% versus 4.1%, p = 0.0099). Transplants into immunodeficient mice demonstrated robust engraftment (8.1% and 23.3% in bone marrow) for LV- and TI-IL2RG HSPCs with efficient T cell development following TI-IL2RG in all four patients’ HSPCs. Extensive specificity analysis of CRISPR-Cas9 editing with rhAmpSeq covering 82 predicted off-target sites found no evidence of indels in edited cells before (in vitro) or following transplant, in stark contrast to LV’s non-targeted vector integration sites. Together, the improved efficiency and safety of IL2RG correction via CRISPR-Cas9-based TI approach provides a strong rationale for a clinical trial for treatment of XSCID patients.
format Online
Article
Text
id pubmed-9846165
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98461652023-01-19 CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells Brault, Julie Liu, Taylor Liu, Siyuan Lawson, Amanda Choi, Uimook Kozhushko, Nikita Bzhilyanskaya, Vera Pavel-Dinu, Mara Meis, Ronald J. Eckhaus, Michael A. Burkett, Sandra S. Bosticardo, Marita Kleinstiver, Benjamin P. Notarangelo, Luigi D. Lazzarotto, Cicera R. Tsai, Shengdar Q. Wu, Xiaolin Dahl, Gary A. Porteus, Matthew H. Malech, Harry L. De Ravin, Suk See Front Immunol Immunology INTRODUCTION: Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs. METHODS: We compare the two approaches for integration of IL2RG transgene for functional correction of HSPCs from patients with X-linked Severe Combined Immunodeficiency (SCID-X1 or XSCID); delivery via current clinical lentivector (LV)-IL2RG versus targeted insertion (TI) of IL2RG via homology-directed repair (HDR) when using an adeno-associated virus (AAV)-IL2RG donor following double-strand DNA break at the endogenous IL2RG locus. RESULTS AND DISCUSSION: In vitro differentiation of LV- or TI-treated XSCID HSPCs similarly overcome differentiation block into Pre-T-I and Pre-T-II lymphocytes but we observed significantly superior development of NK cells when corrected by TI (40.7% versus 4.1%, p = 0.0099). Transplants into immunodeficient mice demonstrated robust engraftment (8.1% and 23.3% in bone marrow) for LV- and TI-IL2RG HSPCs with efficient T cell development following TI-IL2RG in all four patients’ HSPCs. Extensive specificity analysis of CRISPR-Cas9 editing with rhAmpSeq covering 82 predicted off-target sites found no evidence of indels in edited cells before (in vitro) or following transplant, in stark contrast to LV’s non-targeted vector integration sites. Together, the improved efficiency and safety of IL2RG correction via CRISPR-Cas9-based TI approach provides a strong rationale for a clinical trial for treatment of XSCID patients. Frontiers Media S.A. 2023-01-04 /pmc/articles/PMC9846165/ /pubmed/36685559 http://dx.doi.org/10.3389/fimmu.2022.1067417 Text en Copyright © 2023 Brault, Liu, Liu, Lawson, Choi, Kozhushko, Bzhilyanskaya, Pavel-Dinu, Meis, Eckhaus, Burkett, Bosticardo, Kleinstiver, Notarangelo, Lazzarotto, Tsai, Wu, Dahl, Porteus, Malech and De Ravin https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Brault, Julie
Liu, Taylor
Liu, Siyuan
Lawson, Amanda
Choi, Uimook
Kozhushko, Nikita
Bzhilyanskaya, Vera
Pavel-Dinu, Mara
Meis, Ronald J.
Eckhaus, Michael A.
Burkett, Sandra S.
Bosticardo, Marita
Kleinstiver, Benjamin P.
Notarangelo, Luigi D.
Lazzarotto, Cicera R.
Tsai, Shengdar Q.
Wu, Xiaolin
Dahl, Gary A.
Porteus, Matthew H.
Malech, Harry L.
De Ravin, Suk See
CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells
title CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells
title_full CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells
title_fullStr CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells
title_full_unstemmed CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells
title_short CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells
title_sort crispr-cas9-aav versus lentivector transduction for genome modification of x-linked severe combined immunodeficiency hematopoietic stem cells
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846165/
https://www.ncbi.nlm.nih.gov/pubmed/36685559
http://dx.doi.org/10.3389/fimmu.2022.1067417
work_keys_str_mv AT braultjulie crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT liutaylor crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT liusiyuan crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT lawsonamanda crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT choiuimook crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT kozhushkonikita crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT bzhilyanskayavera crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT paveldinumara crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT meisronaldj crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT eckhausmichaela crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT burkettsandras crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT bosticardomarita crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT kleinstiverbenjaminp crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT notarangeloluigid crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT lazzarottocicerar crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT tsaishengdarq crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT wuxiaolin crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT dahlgarya crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT porteusmatthewh crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT malechharryl crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells
AT deravinsuksee crisprcas9aavversuslentivectortransductionforgenomemodificationofxlinkedseverecombinedimmunodeficiencyhematopoieticstemcells