Cargando…
Exploring prognostic indicators in the pathological images of ovarian cancer based on a deep survival network
Background: Tumor pathology can assess patient prognosis based on a morphological deviation of tumor tissue from normal. Digitizing whole slide images (WSIs) of tissue enables the use of deep learning (DL) techniques in pathology, which may shed light on prognostic indicators of cancers, and avoid b...
Autores principales: | Wu, Meixuan, Zhu, Chengguang, Yang, Jiani, Cheng, Shanshan, Yang, Xiaokang, Gu, Sijia, Xu, Shilin, Wu, Yongsong, Shen, Wei, Huang, Shan, Wang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846244/ https://www.ncbi.nlm.nih.gov/pubmed/36685892 http://dx.doi.org/10.3389/fgene.2022.1069673 |
Ejemplares similares
-
A novel autophagy-related gene signature associated with prognosis and immune microenvironment in ovarian cancer
por: Yang, Jiani, et al.
Publicado: (2023) -
Clinical significance and immune infiltration analyses of a novel coagulation-related signature in ovarian cancer
por: Yang, Jiani, et al.
Publicado: (2023) -
Artificial intelligence-based preoperative prediction system for diagnosis and prognosis in epithelial ovarian cancer: A multicenter study
por: Wu, Meixuan, et al.
Publicado: (2022) -
Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status
por: Wu, Yongsong, et al.
Publicado: (2023) -
Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer
por: Yang, Jiani, et al.
Publicado: (2023)