Cargando…

Subtomogram analysis: The sum of a tomogram’s particles reveals molecular structure in situ

Cryo-electron tomography is uniquely suited to provide insights into the molecular architecture of cells and tissue in the native state. While frozen hydrated specimens tolerate sufficient electron doses to distinguish different types of particles in a tomogram, the accumulating beam damage does not...

Descripción completa

Detalles Bibliográficos
Autor principal: Förster, Friedrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846452/
https://www.ncbi.nlm.nih.gov/pubmed/36684812
http://dx.doi.org/10.1016/j.yjsbx.2022.100063
Descripción
Sumario:Cryo-electron tomography is uniquely suited to provide insights into the molecular architecture of cells and tissue in the native state. While frozen hydrated specimens tolerate sufficient electron doses to distinguish different types of particles in a tomogram, the accumulating beam damage does not allow resolving their detailed molecular structure individually. Statistical methods for subtomogram averaging and classification that coherently enhance the signal of particles corresponding to copies of the same type of macromolecular allow obtaining much higher resolution insights into macromolecules. Here, I review the developments in subtomogram analysis at Wolfgang Baumeister’s laboratory that make the dream of structural biology in the native cell become reality.