Cargando…
Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry
The synthesis of bulk nanoporous copper (npCu) from a copper–manganese alloy by electrochemical dealloying and free corrosion as well as the electrochemical behaviour of the dealloyed structures is investigated by in situ resistometry. In comparison to the well-established nanoporous gold (npAu) sys...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846480/ https://www.ncbi.nlm.nih.gov/pubmed/36756274 http://dx.doi.org/10.1039/d2na00618a |
_version_ | 1784871188965621760 |
---|---|
author | Hengge, Elisabeth Ihrenberger, Jakob Steyskal, Eva-Maria Buzolin, Ricardo Luckabauer, Martin Sommitsch, Christof Würschum, Roland |
author_facet | Hengge, Elisabeth Ihrenberger, Jakob Steyskal, Eva-Maria Buzolin, Ricardo Luckabauer, Martin Sommitsch, Christof Würschum, Roland |
author_sort | Hengge, Elisabeth |
collection | PubMed |
description | The synthesis of bulk nanoporous copper (npCu) from a copper–manganese alloy by electrochemical dealloying and free corrosion as well as the electrochemical behaviour of the dealloyed structures is investigated by in situ resistometry. In comparison to the well-established nanoporous gold (npAu) system, npCu shows strongly suppressed reordering processes in the porous structure (behind the etch front), which can be attributed to pronounced manganese oxide formation. Characteristic variations with the electrolyte concentration and potential applied for dealloying could be observed. Cyclic voltammetry was used to clarify the electrochemical behaviour of npCu. Oxide formation is further investigated by SEM and EDX revealing a hybrid composite of copper and manganese oxide on the surface of a metallic copper skeleton. Platelet-like structures embedded in the porous structure are identified which are rich in manganese oxide after prolonged dealloying. As an outlook, this unique heterogeneous structure with a large surface area and the inherent properties of manganese and copper oxides may offer application potential for the development of electrodes for energy storage and catalysis. |
format | Online Article Text |
id | pubmed-9846480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-98464802023-02-07 Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry Hengge, Elisabeth Ihrenberger, Jakob Steyskal, Eva-Maria Buzolin, Ricardo Luckabauer, Martin Sommitsch, Christof Würschum, Roland Nanoscale Adv Chemistry The synthesis of bulk nanoporous copper (npCu) from a copper–manganese alloy by electrochemical dealloying and free corrosion as well as the electrochemical behaviour of the dealloyed structures is investigated by in situ resistometry. In comparison to the well-established nanoporous gold (npAu) system, npCu shows strongly suppressed reordering processes in the porous structure (behind the etch front), which can be attributed to pronounced manganese oxide formation. Characteristic variations with the electrolyte concentration and potential applied for dealloying could be observed. Cyclic voltammetry was used to clarify the electrochemical behaviour of npCu. Oxide formation is further investigated by SEM and EDX revealing a hybrid composite of copper and manganese oxide on the surface of a metallic copper skeleton. Platelet-like structures embedded in the porous structure are identified which are rich in manganese oxide after prolonged dealloying. As an outlook, this unique heterogeneous structure with a large surface area and the inherent properties of manganese and copper oxides may offer application potential for the development of electrodes for energy storage and catalysis. RSC 2022-11-28 /pmc/articles/PMC9846480/ /pubmed/36756274 http://dx.doi.org/10.1039/d2na00618a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Hengge, Elisabeth Ihrenberger, Jakob Steyskal, Eva-Maria Buzolin, Ricardo Luckabauer, Martin Sommitsch, Christof Würschum, Roland Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
title | Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
title_full | Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
title_fullStr | Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
title_full_unstemmed | Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
title_short | Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
title_sort | porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper–manganese alloy studied by in situ resistometry |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846480/ https://www.ncbi.nlm.nih.gov/pubmed/36756274 http://dx.doi.org/10.1039/d2na00618a |
work_keys_str_mv | AT henggeelisabeth porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry AT ihrenbergerjakob porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry AT steyskalevamaria porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry AT buzolinricardo porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry AT luckabauermartin porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry AT sommitschchristof porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry AT wurschumroland porosityevolutionandoxideformationinbulknanoporouscopperdealloyedfromacoppermanganesealloystudiedbyinsituresistometry |