Cargando…
SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition
Integrating multi-omics data for cancer subtype recognition is an important task in bioinformatics. Recently, deep learning has been applied to recognize the subtype of cancers. However, existing studies almost integrate the multi-omics data simply by concatenation as the single data and then learn...
Autores principales: | Sun, Qiuwen, Cheng, Lei, Meng, Ao, Ge, Shuguang, Chen, Jie, Zhang, Longzhen, Gong, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846505/ https://www.ncbi.nlm.nih.gov/pubmed/36685873 http://dx.doi.org/10.3389/fgene.2022.1032768 |
Ejemplares similares
-
MultiGATAE: A Novel Cancer Subtype Identification Method Based on Multi-Omics and Attention Mechanism
por: Zhang, Ge, et al.
Publicado: (2022) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma
por: Zhang, Li, et al.
Publicado: (2018) -
Functional impact of multi-omic interactions in breast cancer subtypes
por: Ochoa, Soledad, et al.
Publicado: (2023) -
Multi-View Spectral Clustering Based on Multi-Smooth Representation Fusion for Cancer Subtype Prediction
por: Liu, Jian, et al.
Publicado: (2021)