Cargando…
Using similar patients to predict complication in patients with diabetes, hypertension, and lipid disorder: a domain knowledge-infused convolutional neural network approach
OBJECTIVE: This study aims to develop a convolutional neural network-based learning framework called domain knowledge-infused convolutional neural network (DK-CNN) for retrieving clinically similar patient and to personalize the prediction of macrovascular complication using the retrieved patients....
Autores principales: | Oei, Ronald Wihal, Hsu, Wynne, Lee, Mong Li, Tan, Ngiap Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846687/ https://www.ncbi.nlm.nih.gov/pubmed/36343096 http://dx.doi.org/10.1093/jamia/ocac212 |
Ejemplares similares
-
Using Domain Knowledge and Data-Driven Insights for Patient Similarity Analytics
por: Oei, Ronald Wihal, et al.
Publicado: (2021) -
Diabetes medication recommendation system using patient similarity analytics
por: Tan, Wei Ying, et al.
Publicado: (2022) -
Patient similarity analytics for explainable clinical risk prediction
por: Fang, Hao Sen Andrew, et al.
Publicado: (2021) -
Convolutional neural network for cell classification using microscope images of intracellular actin networks
por: Oei, Ronald Wihal, et al.
Publicado: (2019) -
Metapaths: similarity search in heterogeneous knowledge graphs via meta-paths
por: Noori, Ayush, et al.
Publicado: (2023)