Cargando…
The global depth range of marine fishes and their genetic coverage for environmental DNA metabarcoding
The bathymetric and geographical distribution of marine species represent a key information in biodiversity conservation. Yet, deep‐sea ecosystems are among the least explored on Earth and are increasingly impacted by human activities. Environmental DNA (eDNA) metabarcoding has emerged as a promisin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846838/ https://www.ncbi.nlm.nih.gov/pubmed/36699576 http://dx.doi.org/10.1002/ece3.9672 |
Sumario: | The bathymetric and geographical distribution of marine species represent a key information in biodiversity conservation. Yet, deep‐sea ecosystems are among the least explored on Earth and are increasingly impacted by human activities. Environmental DNA (eDNA) metabarcoding has emerged as a promising method to study fish biodiversity but applications to the deep‐sea are still scarce. A major limitation in the application of eDNA metabarcoding is the incompleteness of species sequences available in public genetic databases which reduces the extent of detected species. This incompleteness by depth is still unknown. Here, we built the global bathymetric and geographical distribution of 10,826 actinopterygian and 960 chondrichthyan fish species. We assessed their genetic coverage by depth and by ocean for three main metabarcoding markers used in the literature: teleo and MiFish‐U/E. We also estimated the number of primer mismatches per species amplified by in silico polymerase chain reaction which influence the probability of species detection. Actinopterygians show a stronger decrease in species richness with depth than Chondrichthyans. These richness gradients are accompanied by a continuous species turnover between depths. Fish species coverage with the MiFish‐U/E markers is higher than with teleo while threatened species are more sequenced than the others. “Deep‐endemic” species, those not ascending to the shallow depth layer, are less sequenced than not threatened species. The number of primer mismatches is not higher for deep‐sea species than for shallower ones. eDNA metabarcoding is promising for species detection in the deep‐sea to better account for the 3‐dimensional structure of the ocean in marine biodiversity monitoring and conservation. However, we argue that sequencing efforts on “deep‐endemic” species are needed. |
---|