Cargando…
Cost-effectiveness of immune checkpoint inhibition and targeted treatment in combination as adjuvant treatment of patient with BRAF-mutant advanced melanoma
BACKGROUND: Immune checkpoint inhibitors (ICIs) and targeted treatments have improved the health outcomes of patients with advanced melanoma. However, due to the high cost of novel therapies, it is crucial to evaluate their value by considering both effectiveness and cost. To compare the cost-effect...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847087/ https://www.ncbi.nlm.nih.gov/pubmed/36653848 http://dx.doi.org/10.1186/s12913-023-09058-7 |
Sumario: | BACKGROUND: Immune checkpoint inhibitors (ICIs) and targeted treatments have improved the health outcomes of patients with advanced melanoma. However, due to the high cost of novel therapies, it is crucial to evaluate their value by considering both effectiveness and cost. To compare the cost-effectiveness of these novel agents (atezolizumab-vemurafenib-cobimetinib, vemurafenib-plus-cobimetinib, dabrafenib-plus-trametinib, and encorafenib-plus-binimetinib) for first-line treatment of metastatic melanoma with the BRAF(V600) mutation. METHODS: A patient-level model was developed to project the health outcomes of 4 strategies for patients with advanced melanoma. We estimated transition probabilities from the IMspire150 (ClinicalTrials.gov, NCT02908672), COMBI-AD (NCT01682083), and COLUMBUS (NCT01909453) trials using a parametric survival model. All health outcomes, including direct cost, quality-adjusted life-years (QALYs) and the incremental cost-effectiveness ratio (ICER), were estimated from the US payer perspective. Lifetime cost, QALYs, life-years (LYs), and ICERs were calculated. Univariable and probabilistic sensitivity analyses were performed to test model robustness, along with multiple scenario analyses. RESULTS: Of the 4 competing strategies, atezolizumab-vemurafenib-cobimetinib produced the best health outcomes, and the vemurafenib-cobimetinib strategy was the least expensive option. Atezolizumab-vemurafenib-cobimetinib, dabrafenib-plus-trametinib, and vemurafenib-cobimetinib formed the cost-effective frontier, indicating that the ordered ICERs were $325,113/QALYs for dabrafenib-plus-trametinib vs. vemurafenib-cobimetinib strategies and $2,247,500/QALYs for atezolizumab-vemurafenib-cobimetinib vs. dabrafenib-plus-trametinib strategies. Encorafenib-plus-binimetinib was dominated by the other 3 competing strategies. The drug price and first-line utility significantly influenced the model utcomes. CONCLUSIONS: For BRAF-mutant advanced melanoma, the vemurafenib-cobimetinib strategy could be considered the most cost-effective treatment at the willingness-to-pay threshold of $150,000. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12913-023-09058-7. |
---|