Cargando…
A method for rapid and homogenous initiation of post-harvest physiological deterioration in cassava storage roots identifies Indonesian cultivars with improved shelf-life performance
Cassava is the most cultivated and consumed root crop in the world. One of the major constraints to the cassava value chain is the short shelf life of cassava storage roots which is primarily due to the so-called post-harvest physiological deterioration (PPD). The identification of natural sources o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847153/ https://www.ncbi.nlm.nih.gov/pubmed/36653871 http://dx.doi.org/10.1186/s13007-022-00977-w |
Sumario: | Cassava is the most cultivated and consumed root crop in the world. One of the major constraints to the cassava value chain is the short shelf life of cassava storage roots which is primarily due to the so-called post-harvest physiological deterioration (PPD). The identification of natural sources of PPD tolerance represents a key approach to mitigating PPD losses by generating farmer- and industry-preferred cassava cultivars with prolonged shelf life. In the present study, a PPD assessment method was developed to screen for PPD tolerance in the cassava germplasm. The proposed PPD assessment method displayed a reduced rate of microbial infection and allowed a rapid and homogenous development of typical PPD symptoms in the cassava storage roots. We successfully used the PPD assessment method in combination with an image-based PPD scoring method to identify and characterize PPD tolerance in 28 cassava cultivars from the Indonesian cassava germplasm. Our analysis showed a significant and positive correlation between PPD score and dry matter content (r = 0.589–0.664, p-value < 0.001). Analysis of additional root parameters showed a significant and positive correlation between PPD scores at 2 days post-harvest (dph) and root length (r = 0.388, p-value < 0.05). Our analysis identified at least 4 cultivars displaying a significantly delayed onset of PPD symptoms as compared to the other selected cultivars. The availability of cassava cultivars contrasting for tolerance to PPD will be particularly instrumental to understanding the molecular mechanisms associated with delayed PPD in cassava roots. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13007-022-00977-w. |
---|