Cargando…

Graphene quantum dots functionalised with rhamnolipid produced from bioconversion of palm kernel oil by Pseudomonas stutzeri BK-AB12MT as a photocatalyst

Methylene blue (MB) is a common organic dye found in textile wastewater and can harm the environment. Rhamnolipid-functionalized graphene quantum dots (RL-GQDs) are a newly developed eco-friendly photocatalyst to degrade MB. This photocatalyst is synthesized from graphene quantum dots (GQDs) and rha...

Descripción completa

Detalles Bibliográficos
Autores principales: Habibah, Fera Faridatul, Ivansyah, Atthar Luqman, Ivan, Samuel, Hertadi, Rukman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847228/
https://www.ncbi.nlm.nih.gov/pubmed/36756415
http://dx.doi.org/10.1039/d2ra05967c
Descripción
Sumario:Methylene blue (MB) is a common organic dye found in textile wastewater and can harm the environment. Rhamnolipid-functionalized graphene quantum dots (RL-GQDs) are a newly developed eco-friendly photocatalyst to degrade MB. This photocatalyst is synthesized from graphene quantum dots (GQDs) and rhamnolipid. GQDs are already promising visible-light photocatalysts to degrade organic dyes. However, GQDs are not promising photocatalysts due to their reusability and photocatalytic performance. In this work, we used rhamnolipid to modify GQDs' structure and enhance their photocatalytic performance. The rhamnolipid used in this work was produced from bioconversion of palm kernel oil by mutated bacterial cells of Pseudomonas stutzeri BK-AB12MT. Meanwhile, GQDs were synthesized using the bottom-up method by pyrolysing citric acid. Transmission electron microscopy and Fourier-Transform Infrared spectroscopy were used to characterize these hybrid materials. These characterization techniques verified the formation of RL-GQDs. To prove the photocatalytic performance of RL-GQDs, we investigated the photocatalytic activity under visible light compared to some common photocatalysts, such as zinc oxide and titanium dioxide. Our findings showed that RL-GQDs could be applied as an eco-friendly photocatalyst to replace TiO(2) with a degradation efficiency of 59% ± 3% under visible light irradiation, higher than TiO(2).