Cargando…
Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies
Many packages for a meta-analysis of genome-wide association studies (GWAS) have been developed to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847376/ https://www.ncbi.nlm.nih.gov/pubmed/36617656 http://dx.doi.org/10.5808/gi.22046 |
_version_ | 1784871441856987136 |
---|---|
author | Kim, Gyungbu Lee, Yoonsuk Park, Jeong Ho Kim, Dongmin Lee, Wonseok |
author_facet | Kim, Gyungbu Lee, Yoonsuk Park, Jeong Ho Kim, Dongmin Lee, Wonseok |
author_sort | Kim, Gyungbu |
collection | PubMed |
description | Many packages for a meta-analysis of genome-wide association studies (GWAS) have been developed to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easily process a meta-analysis by automatically selecting between a fixed effects and a random effects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in a single process. It provides a step-by-step meta-analysis of GWAS for each association in the following order: heterogeneity test, two different calculations of an effect size and a p-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. These methods enable users to validate the results of individual studies with greater statistical power and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders. |
format | Online Article Text |
id | pubmed-9847376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Korea Genome Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-98473762023-01-31 Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies Kim, Gyungbu Lee, Yoonsuk Park, Jeong Ho Kim, Dongmin Lee, Wonseok Genomics Inform Application Note Many packages for a meta-analysis of genome-wide association studies (GWAS) have been developed to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easily process a meta-analysis by automatically selecting between a fixed effects and a random effects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in a single process. It provides a step-by-step meta-analysis of GWAS for each association in the following order: heterogeneity test, two different calculations of an effect size and a p-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. These methods enable users to validate the results of individual studies with greater statistical power and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders. Korea Genome Organization 2022-12-30 /pmc/articles/PMC9847376/ /pubmed/36617656 http://dx.doi.org/10.5808/gi.22046 Text en (c) 2022, Korea Genome Organization https://creativecommons.org/licenses/by/4.0/(CC) This is an open-access article distributed under the terms of the Creative Commons Attribution license(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Application Note Kim, Gyungbu Lee, Yoonsuk Park, Jeong Ho Kim, Dongmin Lee, Wonseok Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
title | Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
title_full | Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
title_fullStr | Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
title_full_unstemmed | Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
title_short | Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
title_sort | beta-meta: a meta-analysis application considering heterogeneity among genome-wide association studies |
topic | Application Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847376/ https://www.ncbi.nlm.nih.gov/pubmed/36617656 http://dx.doi.org/10.5808/gi.22046 |
work_keys_str_mv | AT kimgyungbu betametaametaanalysisapplicationconsideringheterogeneityamonggenomewideassociationstudies AT leeyoonsuk betametaametaanalysisapplicationconsideringheterogeneityamonggenomewideassociationstudies AT parkjeongho betametaametaanalysisapplicationconsideringheterogeneityamonggenomewideassociationstudies AT kimdongmin betametaametaanalysisapplicationconsideringheterogeneityamonggenomewideassociationstudies AT leewonseok betametaametaanalysisapplicationconsideringheterogeneityamonggenomewideassociationstudies |