Cargando…

Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation

INTRODUCTION: Analysis of task fMRI studies is typically based on using ordinary least squares within a voxel- or vertex-wise linear regression framework known as the general linear model. This use produces estimates and standard errors of the regression coefficients representing amplitudes of task-...

Descripción completa

Detalles Bibliográficos
Autores principales: Parlak, Fatma, Pham, Damon D., Spencer, Daniel A., Welsh, Robert C., Mejia, Amanda F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847678/
https://www.ncbi.nlm.nih.gov/pubmed/36685218
http://dx.doi.org/10.3389/fnins.2022.1051424
_version_ 1784871517839949824
author Parlak, Fatma
Pham, Damon D.
Spencer, Daniel A.
Welsh, Robert C.
Mejia, Amanda F.
author_facet Parlak, Fatma
Pham, Damon D.
Spencer, Daniel A.
Welsh, Robert C.
Mejia, Amanda F.
author_sort Parlak, Fatma
collection PubMed
description INTRODUCTION: Analysis of task fMRI studies is typically based on using ordinary least squares within a voxel- or vertex-wise linear regression framework known as the general linear model. This use produces estimates and standard errors of the regression coefficients representing amplitudes of task-induced activations. To produce valid statistical inferences, several key statistical assumptions must be met, including that of independent residuals. Since task fMRI residuals often exhibit temporal autocorrelation, it is common practice to perform “prewhitening” to mitigate that dependence. Prewhitening involves estimating the residual correlation structure and then applying a filter to induce residual temporal independence. While theoretically straightforward, a major challenge in prewhitening for fMRI data is accurately estimating the residual autocorrelation at each voxel or vertex of the brain. Assuming a global model for autocorrelation, which is the default in several standard fMRI software tools, may under- or over-whiten in certain areas and produce differential false positive control across the brain. The increasing popularity of multiband acquisitions with faster temporal resolution increases the challenge of effective prewhitening because more complex models are required to accurately capture the strength and structure of autocorrelation. These issues are becoming more critical now because of a trend toward subject-level analysis and inference. In group-average or group-difference analyses, the within-subject residual correlation structure is accounted for implicitly, so inadequate prewhitening is of little real consequence. For individual subject inference, however, accurate prewhitening is crucial to avoid inflated or spatially variable false positive rates. METHODS: In this paper, we first thoroughly examine the patterns, sources and strength of residual autocorrelation in multiband task fMRI data. Second, we evaluate the ability of different autoregressive (AR) model-based prewhitening strategies to effectively mitigate autocorrelation and control false positives. We consider two main factors: the choice of AR model order and the level of spatial regularization of AR model coefficients, ranging from local smoothing to global averaging. We also consider determining the AR model order optimally at every vertex, but we do not observe an additional benefit of this over the use of higher-order AR models (e.g. (AR(6)). To overcome the computational challenge associated with spatially variable prewhitening, we developed a computationally efficient R implementation using parallelization and fast C++ backend code. This implementation is included in the open source R package BayesfMRI. RESULTS: We find that residual autocorrelation exhibits marked spatial variance across the cortex and is influenced by many factors including the task being performed, the specific acquisition protocol, mis-modeling of the hemodynamic response function, unmodeled noise due to subject head motion, and systematic individual differences. We also find that local regularization is much more effective than global averaging at mitigating autocorrelation. While increasing the AR model order is also helpful, it has a lesser effect than allowing AR coefficients to vary spatially. We find that prewhitening with an AR(6) model with local regularization is effective at reducing or even eliminating autocorrelation and controlling false positives. CONCLUSION: Our analysis revealed dramatic spatial differences in autocorrelation across the cortex. This spatial topology is unique to each session, being influenced by the task being performed, the acquisition technique, various modeling choices, and individual differences. If not accounted for, these differences will result in differential false positive control and power across the cortex and across subjects.
format Online
Article
Text
id pubmed-9847678
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98476782023-01-19 Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation Parlak, Fatma Pham, Damon D. Spencer, Daniel A. Welsh, Robert C. Mejia, Amanda F. Front Neurosci Neuroscience INTRODUCTION: Analysis of task fMRI studies is typically based on using ordinary least squares within a voxel- or vertex-wise linear regression framework known as the general linear model. This use produces estimates and standard errors of the regression coefficients representing amplitudes of task-induced activations. To produce valid statistical inferences, several key statistical assumptions must be met, including that of independent residuals. Since task fMRI residuals often exhibit temporal autocorrelation, it is common practice to perform “prewhitening” to mitigate that dependence. Prewhitening involves estimating the residual correlation structure and then applying a filter to induce residual temporal independence. While theoretically straightforward, a major challenge in prewhitening for fMRI data is accurately estimating the residual autocorrelation at each voxel or vertex of the brain. Assuming a global model for autocorrelation, which is the default in several standard fMRI software tools, may under- or over-whiten in certain areas and produce differential false positive control across the brain. The increasing popularity of multiband acquisitions with faster temporal resolution increases the challenge of effective prewhitening because more complex models are required to accurately capture the strength and structure of autocorrelation. These issues are becoming more critical now because of a trend toward subject-level analysis and inference. In group-average or group-difference analyses, the within-subject residual correlation structure is accounted for implicitly, so inadequate prewhitening is of little real consequence. For individual subject inference, however, accurate prewhitening is crucial to avoid inflated or spatially variable false positive rates. METHODS: In this paper, we first thoroughly examine the patterns, sources and strength of residual autocorrelation in multiband task fMRI data. Second, we evaluate the ability of different autoregressive (AR) model-based prewhitening strategies to effectively mitigate autocorrelation and control false positives. We consider two main factors: the choice of AR model order and the level of spatial regularization of AR model coefficients, ranging from local smoothing to global averaging. We also consider determining the AR model order optimally at every vertex, but we do not observe an additional benefit of this over the use of higher-order AR models (e.g. (AR(6)). To overcome the computational challenge associated with spatially variable prewhitening, we developed a computationally efficient R implementation using parallelization and fast C++ backend code. This implementation is included in the open source R package BayesfMRI. RESULTS: We find that residual autocorrelation exhibits marked spatial variance across the cortex and is influenced by many factors including the task being performed, the specific acquisition protocol, mis-modeling of the hemodynamic response function, unmodeled noise due to subject head motion, and systematic individual differences. We also find that local regularization is much more effective than global averaging at mitigating autocorrelation. While increasing the AR model order is also helpful, it has a lesser effect than allowing AR coefficients to vary spatially. We find that prewhitening with an AR(6) model with local regularization is effective at reducing or even eliminating autocorrelation and controlling false positives. CONCLUSION: Our analysis revealed dramatic spatial differences in autocorrelation across the cortex. This spatial topology is unique to each session, being influenced by the task being performed, the acquisition technique, various modeling choices, and individual differences. If not accounted for, these differences will result in differential false positive control and power across the cortex and across subjects. Frontiers Media S.A. 2023-01-04 /pmc/articles/PMC9847678/ /pubmed/36685218 http://dx.doi.org/10.3389/fnins.2022.1051424 Text en Copyright © 2023 Parlak, Pham, Spencer, Welsh and Mejia. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Parlak, Fatma
Pham, Damon D.
Spencer, Daniel A.
Welsh, Robert C.
Mejia, Amanda F.
Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation
title Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation
title_full Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation
title_fullStr Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation
title_full_unstemmed Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation
title_short Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation
title_sort sources of residual autocorrelation in multiband task fmri and strategies for effective mitigation
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847678/
https://www.ncbi.nlm.nih.gov/pubmed/36685218
http://dx.doi.org/10.3389/fnins.2022.1051424
work_keys_str_mv AT parlakfatma sourcesofresidualautocorrelationinmultibandtaskfmriandstrategiesforeffectivemitigation
AT phamdamond sourcesofresidualautocorrelationinmultibandtaskfmriandstrategiesforeffectivemitigation
AT spencerdaniela sourcesofresidualautocorrelationinmultibandtaskfmriandstrategiesforeffectivemitigation
AT welshrobertc sourcesofresidualautocorrelationinmultibandtaskfmriandstrategiesforeffectivemitigation
AT mejiaamandaf sourcesofresidualautocorrelationinmultibandtaskfmriandstrategiesforeffectivemitigation