Cargando…
The application of machine learning to predict high-cost patients: A performance-comparison of different models using healthcare claims data
Our aim was to predict future high-cost patients with machine learning using healthcare claims data. We applied a random forest (RF), a gradient boosting machine (GBM), an artificial neural network (ANN) and a logistic regression (LR) to predict high-cost patients in the following year. Therefore, w...
Autores principales: | Langenberger, Benedikt, Schulte, Timo, Groene, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847900/ https://www.ncbi.nlm.nih.gov/pubmed/36652450 http://dx.doi.org/10.1371/journal.pone.0279540 |
Ejemplares similares
-
Predicting whether patients will achieve minimal clinically important differences following hip or knee arthroplasty: a performance comparison of machine learning, logistic regression, and pre-surgery PROM scores using data from nine German hospitals
por: Langenberger, Benedikt, et al.
Publicado: (2023) -
Can minimal clinically important differences in patient reported outcome measures be predicted by machine learning in patients with total knee or hip arthroplasty? A systematic review
por: Langenberger, Benedikt, et al.
Publicado: (2022) -
Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions
por: Schulte, Timo, et al.
Publicado: (2023) -
MACHINE LEARNING APPROACHES TO ENHANCE CLAIMS DATA ANALYSES
por: Pietrobon, Ricardo, et al.
Publicado: (2019) -
Comparison of Fracture Identification Using Different Definitions in Healthcare Administrative (Claims) Data
por: Konstantelos, Natalia, et al.
Publicado: (2023)