Cargando…

Automated measurement of inter-arytenoid distance on 4D laryngeal CT: A validation study

Changes to the voice are prevalent and occur early in Parkinson’s disease. Correlates of these voice changes on four-dimensional laryngeal computed-tomography imaging, such as the inter-arytenoid distance, are promising biomarkers of the disease’s presence and severity. However, manual measurement o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Andrew, Desai, Nandakishor, Lau, Kenneth K., Palaniswami, Marimuthu, O’Brien, Terence J., Palaniswami, Paari, Thyagarajan, Dominic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847963/
https://www.ncbi.nlm.nih.gov/pubmed/36652423
http://dx.doi.org/10.1371/journal.pone.0279927
Descripción
Sumario:Changes to the voice are prevalent and occur early in Parkinson’s disease. Correlates of these voice changes on four-dimensional laryngeal computed-tomography imaging, such as the inter-arytenoid distance, are promising biomarkers of the disease’s presence and severity. However, manual measurement of the inter-arytenoid distance is a laborious process, limiting its feasibility in large-scale research and clinical settings. Automated methods of measurement provide a solution. Here, we present a machine-learning module which determines the inter-arytenoid distance in an automated manner. We obtained automated inter-arytenoid distance readings on imaging from participants with Parkinson’s disease as well as healthy controls, and then validated these against manually derived estimates. On a modified Bland-Altman analysis, we found a mean bias of 1.52 mm (95% limits of agreement -1.7 to 4.7 mm) between the automated and manual techniques, which improves to a mean bias of 0.52 mm (95% limits of agreement -1.9 to 2.9 mm) when variability due to differences in slice selection between the automated and manual methods are removed. Our results demonstrate that estimates of the inter-arytenoid distance with our automated machine-learning module are accurate, and represents a promising tool to be utilized in future work studying the laryngeal changes in Parkinson’s disease.