Cargando…
A benchmark for automatic medical consultation system: frameworks, tasks and datasets
MOTIVATION: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848052/ https://www.ncbi.nlm.nih.gov/pubmed/36539203 http://dx.doi.org/10.1093/bioinformatics/btac817 |
_version_ | 1784871617681162240 |
---|---|
author | Chen, Wei Li, Zhiwei Fang, Hongyi Yao, Qianyuan Zhong, Cheng Hao, Jianye Zhang, Qi Huang, Xuanjing Peng, Jiajie Wei, Zhongyu |
author_facet | Chen, Wei Li, Zhiwei Fang, Hongyi Yao, Qianyuan Zhong, Cheng Hao, Jianye Zhang, Qi Huang, Xuanjing Peng, Jiajie Wei, Zhongyu |
author_sort | Chen, Wei |
collection | PubMed |
description | MOTIVATION: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding and task-oriented interaction. We create a new large medical dialogue dataset with multi-level fine-grained annotations and establish five independent tasks, including named entity recognition, dialogue act classification, symptom label inference, medical report generation and diagnosis-oriented dialogue policy. RESULTS: We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies. AVAILABILITY AND IMPLEMENTATION: Both code and data are available from https://github.com/lemuria-wchen/imcs21. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-9848052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98480522023-01-20 A benchmark for automatic medical consultation system: frameworks, tasks and datasets Chen, Wei Li, Zhiwei Fang, Hongyi Yao, Qianyuan Zhong, Cheng Hao, Jianye Zhang, Qi Huang, Xuanjing Peng, Jiajie Wei, Zhongyu Bioinformatics Original Paper MOTIVATION: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding and task-oriented interaction. We create a new large medical dialogue dataset with multi-level fine-grained annotations and establish five independent tasks, including named entity recognition, dialogue act classification, symptom label inference, medical report generation and diagnosis-oriented dialogue policy. RESULTS: We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies. AVAILABILITY AND IMPLEMENTATION: Both code and data are available from https://github.com/lemuria-wchen/imcs21. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-12-20 /pmc/articles/PMC9848052/ /pubmed/36539203 http://dx.doi.org/10.1093/bioinformatics/btac817 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Chen, Wei Li, Zhiwei Fang, Hongyi Yao, Qianyuan Zhong, Cheng Hao, Jianye Zhang, Qi Huang, Xuanjing Peng, Jiajie Wei, Zhongyu A benchmark for automatic medical consultation system: frameworks, tasks and datasets |
title | A benchmark for automatic medical consultation system: frameworks, tasks and datasets |
title_full | A benchmark for automatic medical consultation system: frameworks, tasks and datasets |
title_fullStr | A benchmark for automatic medical consultation system: frameworks, tasks and datasets |
title_full_unstemmed | A benchmark for automatic medical consultation system: frameworks, tasks and datasets |
title_short | A benchmark for automatic medical consultation system: frameworks, tasks and datasets |
title_sort | benchmark for automatic medical consultation system: frameworks, tasks and datasets |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848052/ https://www.ncbi.nlm.nih.gov/pubmed/36539203 http://dx.doi.org/10.1093/bioinformatics/btac817 |
work_keys_str_mv | AT chenwei abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT lizhiwei abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT fanghongyi abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT yaoqianyuan abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT zhongcheng abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT haojianye abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT zhangqi abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT huangxuanjing abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT pengjiajie abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT weizhongyu abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT chenwei benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT lizhiwei benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT fanghongyi benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT yaoqianyuan benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT zhongcheng benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT haojianye benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT zhangqi benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT huangxuanjing benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT pengjiajie benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets AT weizhongyu benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets |