Cargando…

A benchmark for automatic medical consultation system: frameworks, tasks and datasets

MOTIVATION: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding an...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wei, Li, Zhiwei, Fang, Hongyi, Yao, Qianyuan, Zhong, Cheng, Hao, Jianye, Zhang, Qi, Huang, Xuanjing, Peng, Jiajie, Wei, Zhongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848052/
https://www.ncbi.nlm.nih.gov/pubmed/36539203
http://dx.doi.org/10.1093/bioinformatics/btac817
_version_ 1784871617681162240
author Chen, Wei
Li, Zhiwei
Fang, Hongyi
Yao, Qianyuan
Zhong, Cheng
Hao, Jianye
Zhang, Qi
Huang, Xuanjing
Peng, Jiajie
Wei, Zhongyu
author_facet Chen, Wei
Li, Zhiwei
Fang, Hongyi
Yao, Qianyuan
Zhong, Cheng
Hao, Jianye
Zhang, Qi
Huang, Xuanjing
Peng, Jiajie
Wei, Zhongyu
author_sort Chen, Wei
collection PubMed
description MOTIVATION: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding and task-oriented interaction. We create a new large medical dialogue dataset with multi-level fine-grained annotations and establish five independent tasks, including named entity recognition, dialogue act classification, symptom label inference, medical report generation and diagnosis-oriented dialogue policy. RESULTS: We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies. AVAILABILITY AND IMPLEMENTATION: Both code and data are available from https://github.com/lemuria-wchen/imcs21. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-9848052
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98480522023-01-20 A benchmark for automatic medical consultation system: frameworks, tasks and datasets Chen, Wei Li, Zhiwei Fang, Hongyi Yao, Qianyuan Zhong, Cheng Hao, Jianye Zhang, Qi Huang, Xuanjing Peng, Jiajie Wei, Zhongyu Bioinformatics Original Paper MOTIVATION: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding and task-oriented interaction. We create a new large medical dialogue dataset with multi-level fine-grained annotations and establish five independent tasks, including named entity recognition, dialogue act classification, symptom label inference, medical report generation and diagnosis-oriented dialogue policy. RESULTS: We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies. AVAILABILITY AND IMPLEMENTATION: Both code and data are available from https://github.com/lemuria-wchen/imcs21. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-12-20 /pmc/articles/PMC9848052/ /pubmed/36539203 http://dx.doi.org/10.1093/bioinformatics/btac817 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Chen, Wei
Li, Zhiwei
Fang, Hongyi
Yao, Qianyuan
Zhong, Cheng
Hao, Jianye
Zhang, Qi
Huang, Xuanjing
Peng, Jiajie
Wei, Zhongyu
A benchmark for automatic medical consultation system: frameworks, tasks and datasets
title A benchmark for automatic medical consultation system: frameworks, tasks and datasets
title_full A benchmark for automatic medical consultation system: frameworks, tasks and datasets
title_fullStr A benchmark for automatic medical consultation system: frameworks, tasks and datasets
title_full_unstemmed A benchmark for automatic medical consultation system: frameworks, tasks and datasets
title_short A benchmark for automatic medical consultation system: frameworks, tasks and datasets
title_sort benchmark for automatic medical consultation system: frameworks, tasks and datasets
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848052/
https://www.ncbi.nlm.nih.gov/pubmed/36539203
http://dx.doi.org/10.1093/bioinformatics/btac817
work_keys_str_mv AT chenwei abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT lizhiwei abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT fanghongyi abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT yaoqianyuan abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT zhongcheng abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT haojianye abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT zhangqi abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT huangxuanjing abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT pengjiajie abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT weizhongyu abenchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT chenwei benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT lizhiwei benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT fanghongyi benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT yaoqianyuan benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT zhongcheng benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT haojianye benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT zhangqi benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT huangxuanjing benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT pengjiajie benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets
AT weizhongyu benchmarkforautomaticmedicalconsultationsystemframeworkstasksanddatasets