Cargando…
SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data
MOTIVATION: Integrative analysis of multiple single-cell RNA-sequencing datasets allows for more comprehensive characterizations of cell types, but systematic technical differences between datasets, known as ‘batch effects’, need to be removed before integration to avoid misleading interpretation of...
Autores principales: | Gan, Dailin, Li, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848058/ https://www.ncbi.nlm.nih.gov/pubmed/36548380 http://dx.doi.org/10.1093/bioinformatics/btac819 |
Ejemplares similares
-
SSBER: removing batch effect for single-cell RNA sequencing data
por: Zhang, Yin, et al.
Publicado: (2021) -
A benchmark of batch-effect correction methods for single-cell RNA sequencing data
por: Tran, Hoa Thi Nhu, et al.
Publicado: (2020) -
Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods
por: Chen, Chao, et al.
Publicado: (2011) -
svaseq: removing batch effects and other unwanted noise from sequencing data
por: Leek, Jeffrey T.
Publicado: (2014) -
A novel approach to remove the batch effect of single-cell data
por: Zhang, Feng, et al.
Publicado: (2019)