Cargando…
Explainable machine learning model for predicting furosemide responsiveness in patients with oliguric acute kidney injury
BACKGROUND: Although current guidelines didn’t support the routine use of furosemide in oliguric acute kidney injury (AKI) management, some patients may benefit from furosemide administration at an early stage. We aimed to develop an explainable machine learning (ML) model to differentiate between f...
Autores principales: | Jiang, Meng, Pan, Chun-qiu, Li, Jian, Xu, Li-gang, Li, Chang-li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848233/ https://www.ncbi.nlm.nih.gov/pubmed/36645039 http://dx.doi.org/10.1080/0886022X.2022.2151468 |
Ejemplares similares
-
Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care
por: Zhang, Zhongheng, et al.
Publicado: (2019) -
Comparison between continuous versus bolus furosemide administration in oliguric postoperative paediatric cardiac patients
por: Taylor, D, et al.
Publicado: (2003) -
Pseudomyxoma Peritonei: A Rare Cause of Oliguric Acute Kidney Injury
por: Min, Hye Sook, et al.
Publicado: (2013) -
COVID‐19 patients in intensive care develop predominantly oliguric acute kidney injury
por: Luther, Tomas, et al.
Publicado: (2020) -
Association between furosemide administration and outcomes in critically ill patients with acute kidney injury
por: Zhao, Guang-ju, et al.
Publicado: (2020)