Cargando…
Emerging electrolyte-gated transistors for neuromorphic perception
With the rapid development of intelligent robotics, the Internet of Things, and smart sensor technologies, great enthusiasm has been devoted to developing next-generation intelligent systems for the emulation of advanced perception functions of humans. Neuromorphic devices, capable of emulating the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848240/ https://www.ncbi.nlm.nih.gov/pubmed/36684849 http://dx.doi.org/10.1080/14686996.2022.2162325 |
Sumario: | With the rapid development of intelligent robotics, the Internet of Things, and smart sensor technologies, great enthusiasm has been devoted to developing next-generation intelligent systems for the emulation of advanced perception functions of humans. Neuromorphic devices, capable of emulating the learning, memory, analysis, and recognition functions of biological neural systems, offer solutions to intelligently process sensory information. As one of the most important neuromorphic devices, Electrolyte-gated transistors (EGTs) have shown great promise in implementing various vital neural functions and good compatibility with sensors. This review introduces the materials, operating principle, and performances of EGTs, followed by discussing the recent progress of EGTs for synapse and neuron emulation. Integrating EGTs with sensors that faithfully emulate diverse perception functions of humans such as tactile and visual perception is discussed. The challenges of EGTs for further development are given. |
---|