Cargando…
Using digital traces to build prospective and real-time county-level early warning systems to anticipate COVID-19 outbreaks in the United States
Coronavirus disease 2019 (COVID-19) continues to affect the world, and the design of strategies to curb disease outbreaks requires close monitoring of their trajectories. We present machine learning methods that leverage internet-based digital traces to anticipate sharp increases in COVID-19 activit...
Autores principales: | Stolerman, Lucas M., Clemente, Leonardo, Poirier, Canelle, Parag, Kris V., Majumder, Atreyee, Masyn, Serge, Resch, Bernd, Santillana, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848273/ https://www.ncbi.nlm.nih.gov/pubmed/36652520 http://dx.doi.org/10.1126/sciadv.abq0199 |
Ejemplares similares
-
Anticipating the occurrence and type of critical transitions
por: Grziwotz, Florian, et al.
Publicado: (2023) -
Combined DNA Index System (CODIS)-Based analysis of untested sexual assault evidence in Palm Beach County Florida
por: Crouse, Cecelia A., et al.
Publicado: (2019) -
An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time
por: Kogan, Nicole E., et al.
Publicado: (2021) -
The role of environmental factors on transmission rates of the COVID-19 outbreak: an initial assessment in two spatial scales
por: Poirier, Canelle, et al.
Publicado: (2020) -
Building better pediatric surgeons: A sentiment analysis of online physician review websites
por: Butler, Liam R, et al.
Publicado: (2022)