Cargando…
Fair classification via domain adaptation: A dual adversarial learning approach
Modern machine learning (ML) models are becoming increasingly popular and are widely used in decision-making systems. However, studies have shown critical issues of ML discrimination and unfairness, which hinder their adoption on high-stake applications. Recent research on fair classifiers has drawn...
Autores principales: | Liang, Yueqing, Chen, Canyu, Tian, Tian, Shu, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848304/ https://www.ncbi.nlm.nih.gov/pubmed/36687771 http://dx.doi.org/10.3389/fdata.2022.1049565 |
Ejemplares similares
-
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022) -
Fairness of recommender systems in the recruitment domain: an analysis from technical and legal perspectives
por: Kumar, Deepak, et al.
Publicado: (2023) -
Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems
por: Wang, Siyu, et al.
Publicado: (2022) -
Does subnetting and port hardening influence human adversarial decisions? An investigation via a HackIT tool
por: Uttrani, Shashank, et al.
Publicado: (2023) -
FAIR Digital Twins for Data-Intensive Research
por: Schultes, Erik, et al.
Publicado: (2022)