Cargando…
Transformer-based deep learning for predicting protein properties in the life sciences
Recent developments in deep learning, coupled with an increasing number of sequenced proteins, have led to a breakthrough in life science applications, in particular in protein property prediction. There is hope that deep learning can close the gap between the number of sequenced proteins and protei...
Autores principales: | Chandra, Abel, Tünnermann, Laura, Löfstedt, Tommy, Gratz, Regina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848389/ https://www.ncbi.nlm.nih.gov/pubmed/36651724 http://dx.doi.org/10.7554/eLife.82819 |
Ejemplares similares
-
Rapid protein stability prediction using deep learning representations
por: Blaabjerg, Lasse M, et al.
Publicado: (2023) -
Data science for the scientific life cycle
por: Ezer, Daphne, et al.
Publicado: (2019) -
Wikidata as a knowledge graph for the life sciences
por: Waagmeester, Andra, et al.
Publicado: (2020) -
Towards deep learning with segregated dendrites
por: Guerguiev, Jordan, et al.
Publicado: (2017) -
DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response
por: Huang, Zhijian, et al.
Publicado: (2023)