Cargando…

Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model

The American Joint Committee on Cancer (AJCC) eighth edition schema for pancreatic ductal adenocarcinoma treats T and N stage as independent factors and uses positive lymph nodes (PLNs) to define N stage, despite data favoring lymph node ratio (LNR). We used artificial intelligence–based techniques...

Descripción completa

Detalles Bibliográficos
Autores principales: Bertsimas, Dimitris, Margonis, Georgios Antonios, Huang, Yifei, Andreatos, Nikolaos, Wiberg, Holly, Ma, Yu, Mcintyre, Caitlin, Pulvirenti, Alessandra, Wagner, Doris, van Dam, J. L., Gavazzi, Francesca, Buettner, Stefan, Imai, Katsunori, Stasinos, Georgios, He, Jin, Kamphues, Carsten, Beyer, Katharina, Seeliger, Hendrik, Weiss, Matthew J., Kreis, Martin, Cameron, John L., Wei, Alice C., Kornprat, Peter, Baba, Hideo, Koerkamp, Bas Groot, Zerbi, Alessandro, D'Angelica, Michael, Wolfgang, Christopher L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848537/
https://www.ncbi.nlm.nih.gov/pubmed/34936469
http://dx.doi.org/10.1200/CCI.21.00001
_version_ 1784871735195074560
author Bertsimas, Dimitris
Margonis, Georgios Antonios
Huang, Yifei
Andreatos, Nikolaos
Wiberg, Holly
Ma, Yu
Mcintyre, Caitlin
Pulvirenti, Alessandra
Wagner, Doris
van Dam, J. L.
Gavazzi, Francesca
Buettner, Stefan
Imai, Katsunori
Stasinos, Georgios
He, Jin
Kamphues, Carsten
Beyer, Katharina
Seeliger, Hendrik
Weiss, Matthew J.
Kreis, Martin
Cameron, John L.
Wei, Alice C.
Kornprat, Peter
Baba, Hideo
Koerkamp, Bas Groot
Zerbi, Alessandro
D'Angelica, Michael
Wolfgang, Christopher L.
author_facet Bertsimas, Dimitris
Margonis, Georgios Antonios
Huang, Yifei
Andreatos, Nikolaos
Wiberg, Holly
Ma, Yu
Mcintyre, Caitlin
Pulvirenti, Alessandra
Wagner, Doris
van Dam, J. L.
Gavazzi, Francesca
Buettner, Stefan
Imai, Katsunori
Stasinos, Georgios
He, Jin
Kamphues, Carsten
Beyer, Katharina
Seeliger, Hendrik
Weiss, Matthew J.
Kreis, Martin
Cameron, John L.
Wei, Alice C.
Kornprat, Peter
Baba, Hideo
Koerkamp, Bas Groot
Zerbi, Alessandro
D'Angelica, Michael
Wolfgang, Christopher L.
author_sort Bertsimas, Dimitris
collection PubMed
description The American Joint Committee on Cancer (AJCC) eighth edition schema for pancreatic ductal adenocarcinoma treats T and N stage as independent factors and uses positive lymph nodes (PLNs) to define N stage, despite data favoring lymph node ratio (LNR). We used artificial intelligence–based techniques to compare PLN with LNR and investigate interactions between tumor size and nodal status. METHODS: Patients who underwent pancreatic ductal adenocarcinoma resection between 2000 and 2017 at six institutions were identified. LNR and PLN were compared through shapley additive explanations (SHAP) analysis, with the best predictor used to define nodal status. We trained optimal classification trees (OCTs) to predict 1-year and 3-year risk of death, incorporating only tumor size and nodal status as variables. The OCTs were compared with the AJCC schema and similarly trained XGBoost models. Variable interactions were explored via SHAP. RESULTS: Two thousand eight hundred seventy-four patients comprised the derivation and 1,231 the validation cohort. SHAP identified LNR as a superior predictor. The OCTs outperformed the AJCC schema in the derivation and validation cohorts (1-year area under the curve: 0.681 v 0.603; 0.638 v 0.586, 3-year area under the curve: 0.682 v 0.639; 0.675 v 0.647, respectively) and performed comparably with the XGBoost models. We identified interactions between LNR and tumor size, suggesting that a negative prognostic factor partially overrides the effect of a concurrent favorable factor. CONCLUSION: Our findings highlight the superiority of LNR and the importance of interactions between tumor size and nodal status. These results and the potential of the OCT methodology to combine them into a powerful, visually interpretable model can help inform future staging systems.
format Online
Article
Text
id pubmed-9848537
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer Health
record_format MEDLINE/PubMed
spelling pubmed-98485372023-01-19 Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model Bertsimas, Dimitris Margonis, Georgios Antonios Huang, Yifei Andreatos, Nikolaos Wiberg, Holly Ma, Yu Mcintyre, Caitlin Pulvirenti, Alessandra Wagner, Doris van Dam, J. L. Gavazzi, Francesca Buettner, Stefan Imai, Katsunori Stasinos, Georgios He, Jin Kamphues, Carsten Beyer, Katharina Seeliger, Hendrik Weiss, Matthew J. Kreis, Martin Cameron, John L. Wei, Alice C. Kornprat, Peter Baba, Hideo Koerkamp, Bas Groot Zerbi, Alessandro D'Angelica, Michael Wolfgang, Christopher L. JCO Clin Cancer Inform ORIGINAL REPORTS The American Joint Committee on Cancer (AJCC) eighth edition schema for pancreatic ductal adenocarcinoma treats T and N stage as independent factors and uses positive lymph nodes (PLNs) to define N stage, despite data favoring lymph node ratio (LNR). We used artificial intelligence–based techniques to compare PLN with LNR and investigate interactions between tumor size and nodal status. METHODS: Patients who underwent pancreatic ductal adenocarcinoma resection between 2000 and 2017 at six institutions were identified. LNR and PLN were compared through shapley additive explanations (SHAP) analysis, with the best predictor used to define nodal status. We trained optimal classification trees (OCTs) to predict 1-year and 3-year risk of death, incorporating only tumor size and nodal status as variables. The OCTs were compared with the AJCC schema and similarly trained XGBoost models. Variable interactions were explored via SHAP. RESULTS: Two thousand eight hundred seventy-four patients comprised the derivation and 1,231 the validation cohort. SHAP identified LNR as a superior predictor. The OCTs outperformed the AJCC schema in the derivation and validation cohorts (1-year area under the curve: 0.681 v 0.603; 0.638 v 0.586, 3-year area under the curve: 0.682 v 0.639; 0.675 v 0.647, respectively) and performed comparably with the XGBoost models. We identified interactions between LNR and tumor size, suggesting that a negative prognostic factor partially overrides the effect of a concurrent favorable factor. CONCLUSION: Our findings highlight the superiority of LNR and the importance of interactions between tumor size and nodal status. These results and the potential of the OCT methodology to combine them into a powerful, visually interpretable model can help inform future staging systems. Wolters Kluwer Health 2021-12-22 /pmc/articles/PMC9848537/ /pubmed/34936469 http://dx.doi.org/10.1200/CCI.21.00001 Text en © 2021 by American Society of Clinical Oncology https://creativecommons.org/licenses/by/4.0/Licensed under the Creative Commons Attribution 4.0 License: http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/)
spellingShingle ORIGINAL REPORTS
Bertsimas, Dimitris
Margonis, Georgios Antonios
Huang, Yifei
Andreatos, Nikolaos
Wiberg, Holly
Ma, Yu
Mcintyre, Caitlin
Pulvirenti, Alessandra
Wagner, Doris
van Dam, J. L.
Gavazzi, Francesca
Buettner, Stefan
Imai, Katsunori
Stasinos, Georgios
He, Jin
Kamphues, Carsten
Beyer, Katharina
Seeliger, Hendrik
Weiss, Matthew J.
Kreis, Martin
Cameron, John L.
Wei, Alice C.
Kornprat, Peter
Baba, Hideo
Koerkamp, Bas Groot
Zerbi, Alessandro
D'Angelica, Michael
Wolfgang, Christopher L.
Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
title Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
title_full Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
title_fullStr Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
title_full_unstemmed Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
title_short Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
title_sort toward an optimized staging system for pancreatic ductal adenocarcinoma: a clinically interpretable, artificial intelligence–based model
topic ORIGINAL REPORTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848537/
https://www.ncbi.nlm.nih.gov/pubmed/34936469
http://dx.doi.org/10.1200/CCI.21.00001
work_keys_str_mv AT bertsimasdimitris towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT margonisgeorgiosantonios towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT huangyifei towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT andreatosnikolaos towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT wibergholly towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT mayu towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT mcintyrecaitlin towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT pulvirentialessandra towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT wagnerdoris towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT vandamjl towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT gavazzifrancesca towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT buettnerstefan towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT imaikatsunori towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT stasinosgeorgios towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT hejin towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT kamphuescarsten towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT beyerkatharina towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT seeligerhendrik towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT weissmatthewj towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT kreismartin towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT cameronjohnl towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT weialicec towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT kornpratpeter towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT babahideo towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT koerkampbasgroot towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT zerbialessandro towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT dangelicamichael towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel
AT wolfgangchristopherl towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel