Cargando…
Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model
The American Joint Committee on Cancer (AJCC) eighth edition schema for pancreatic ductal adenocarcinoma treats T and N stage as independent factors and uses positive lymph nodes (PLNs) to define N stage, despite data favoring lymph node ratio (LNR). We used artificial intelligence–based techniques...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848537/ https://www.ncbi.nlm.nih.gov/pubmed/34936469 http://dx.doi.org/10.1200/CCI.21.00001 |
_version_ | 1784871735195074560 |
---|---|
author | Bertsimas, Dimitris Margonis, Georgios Antonios Huang, Yifei Andreatos, Nikolaos Wiberg, Holly Ma, Yu Mcintyre, Caitlin Pulvirenti, Alessandra Wagner, Doris van Dam, J. L. Gavazzi, Francesca Buettner, Stefan Imai, Katsunori Stasinos, Georgios He, Jin Kamphues, Carsten Beyer, Katharina Seeliger, Hendrik Weiss, Matthew J. Kreis, Martin Cameron, John L. Wei, Alice C. Kornprat, Peter Baba, Hideo Koerkamp, Bas Groot Zerbi, Alessandro D'Angelica, Michael Wolfgang, Christopher L. |
author_facet | Bertsimas, Dimitris Margonis, Georgios Antonios Huang, Yifei Andreatos, Nikolaos Wiberg, Holly Ma, Yu Mcintyre, Caitlin Pulvirenti, Alessandra Wagner, Doris van Dam, J. L. Gavazzi, Francesca Buettner, Stefan Imai, Katsunori Stasinos, Georgios He, Jin Kamphues, Carsten Beyer, Katharina Seeliger, Hendrik Weiss, Matthew J. Kreis, Martin Cameron, John L. Wei, Alice C. Kornprat, Peter Baba, Hideo Koerkamp, Bas Groot Zerbi, Alessandro D'Angelica, Michael Wolfgang, Christopher L. |
author_sort | Bertsimas, Dimitris |
collection | PubMed |
description | The American Joint Committee on Cancer (AJCC) eighth edition schema for pancreatic ductal adenocarcinoma treats T and N stage as independent factors and uses positive lymph nodes (PLNs) to define N stage, despite data favoring lymph node ratio (LNR). We used artificial intelligence–based techniques to compare PLN with LNR and investigate interactions between tumor size and nodal status. METHODS: Patients who underwent pancreatic ductal adenocarcinoma resection between 2000 and 2017 at six institutions were identified. LNR and PLN were compared through shapley additive explanations (SHAP) analysis, with the best predictor used to define nodal status. We trained optimal classification trees (OCTs) to predict 1-year and 3-year risk of death, incorporating only tumor size and nodal status as variables. The OCTs were compared with the AJCC schema and similarly trained XGBoost models. Variable interactions were explored via SHAP. RESULTS: Two thousand eight hundred seventy-four patients comprised the derivation and 1,231 the validation cohort. SHAP identified LNR as a superior predictor. The OCTs outperformed the AJCC schema in the derivation and validation cohorts (1-year area under the curve: 0.681 v 0.603; 0.638 v 0.586, 3-year area under the curve: 0.682 v 0.639; 0.675 v 0.647, respectively) and performed comparably with the XGBoost models. We identified interactions between LNR and tumor size, suggesting that a negative prognostic factor partially overrides the effect of a concurrent favorable factor. CONCLUSION: Our findings highlight the superiority of LNR and the importance of interactions between tumor size and nodal status. These results and the potential of the OCT methodology to combine them into a powerful, visually interpretable model can help inform future staging systems. |
format | Online Article Text |
id | pubmed-9848537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Wolters Kluwer Health |
record_format | MEDLINE/PubMed |
spelling | pubmed-98485372023-01-19 Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model Bertsimas, Dimitris Margonis, Georgios Antonios Huang, Yifei Andreatos, Nikolaos Wiberg, Holly Ma, Yu Mcintyre, Caitlin Pulvirenti, Alessandra Wagner, Doris van Dam, J. L. Gavazzi, Francesca Buettner, Stefan Imai, Katsunori Stasinos, Georgios He, Jin Kamphues, Carsten Beyer, Katharina Seeliger, Hendrik Weiss, Matthew J. Kreis, Martin Cameron, John L. Wei, Alice C. Kornprat, Peter Baba, Hideo Koerkamp, Bas Groot Zerbi, Alessandro D'Angelica, Michael Wolfgang, Christopher L. JCO Clin Cancer Inform ORIGINAL REPORTS The American Joint Committee on Cancer (AJCC) eighth edition schema for pancreatic ductal adenocarcinoma treats T and N stage as independent factors and uses positive lymph nodes (PLNs) to define N stage, despite data favoring lymph node ratio (LNR). We used artificial intelligence–based techniques to compare PLN with LNR and investigate interactions between tumor size and nodal status. METHODS: Patients who underwent pancreatic ductal adenocarcinoma resection between 2000 and 2017 at six institutions were identified. LNR and PLN were compared through shapley additive explanations (SHAP) analysis, with the best predictor used to define nodal status. We trained optimal classification trees (OCTs) to predict 1-year and 3-year risk of death, incorporating only tumor size and nodal status as variables. The OCTs were compared with the AJCC schema and similarly trained XGBoost models. Variable interactions were explored via SHAP. RESULTS: Two thousand eight hundred seventy-four patients comprised the derivation and 1,231 the validation cohort. SHAP identified LNR as a superior predictor. The OCTs outperformed the AJCC schema in the derivation and validation cohorts (1-year area under the curve: 0.681 v 0.603; 0.638 v 0.586, 3-year area under the curve: 0.682 v 0.639; 0.675 v 0.647, respectively) and performed comparably with the XGBoost models. We identified interactions between LNR and tumor size, suggesting that a negative prognostic factor partially overrides the effect of a concurrent favorable factor. CONCLUSION: Our findings highlight the superiority of LNR and the importance of interactions between tumor size and nodal status. These results and the potential of the OCT methodology to combine them into a powerful, visually interpretable model can help inform future staging systems. Wolters Kluwer Health 2021-12-22 /pmc/articles/PMC9848537/ /pubmed/34936469 http://dx.doi.org/10.1200/CCI.21.00001 Text en © 2021 by American Society of Clinical Oncology https://creativecommons.org/licenses/by/4.0/Licensed under the Creative Commons Attribution 4.0 License: http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | ORIGINAL REPORTS Bertsimas, Dimitris Margonis, Georgios Antonios Huang, Yifei Andreatos, Nikolaos Wiberg, Holly Ma, Yu Mcintyre, Caitlin Pulvirenti, Alessandra Wagner, Doris van Dam, J. L. Gavazzi, Francesca Buettner, Stefan Imai, Katsunori Stasinos, Georgios He, Jin Kamphues, Carsten Beyer, Katharina Seeliger, Hendrik Weiss, Matthew J. Kreis, Martin Cameron, John L. Wei, Alice C. Kornprat, Peter Baba, Hideo Koerkamp, Bas Groot Zerbi, Alessandro D'Angelica, Michael Wolfgang, Christopher L. Toward an Optimized Staging System for Pancreatic Ductal Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based Model |
title | Toward an Optimized Staging System for Pancreatic Ductal
Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based
Model |
title_full | Toward an Optimized Staging System for Pancreatic Ductal
Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based
Model |
title_fullStr | Toward an Optimized Staging System for Pancreatic Ductal
Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based
Model |
title_full_unstemmed | Toward an Optimized Staging System for Pancreatic Ductal
Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based
Model |
title_short | Toward an Optimized Staging System for Pancreatic Ductal
Adenocarcinoma: A Clinically Interpretable, Artificial Intelligence–Based
Model |
title_sort | toward an optimized staging system for pancreatic ductal
adenocarcinoma: a clinically interpretable, artificial intelligence–based
model |
topic | ORIGINAL REPORTS |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848537/ https://www.ncbi.nlm.nih.gov/pubmed/34936469 http://dx.doi.org/10.1200/CCI.21.00001 |
work_keys_str_mv | AT bertsimasdimitris towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT margonisgeorgiosantonios towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT huangyifei towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT andreatosnikolaos towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT wibergholly towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT mayu towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT mcintyrecaitlin towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT pulvirentialessandra towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT wagnerdoris towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT vandamjl towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT gavazzifrancesca towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT buettnerstefan towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT imaikatsunori towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT stasinosgeorgios towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT hejin towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT kamphuescarsten towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT beyerkatharina towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT seeligerhendrik towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT weissmatthewj towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT kreismartin towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT cameronjohnl towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT weialicec towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT kornpratpeter towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT babahideo towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT koerkampbasgroot towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT zerbialessandro towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT dangelicamichael towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel AT wolfgangchristopherl towardanoptimizedstagingsystemforpancreaticductaladenocarcinomaaclinicallyinterpretableartificialintelligencebasedmodel |