Cargando…
The Upregulation of GSTO2 is Associated with Colon Cancer Progression and a Poor Prognosis
Colorectal cancer is the second-leading cause of cancer-related mortality in the United States. Glutathione S-transferase can affect the development of cancer. Glutathione S-transferase omega 2, a member of the GST family, plays an important role in many tumors. However, the role of Glutathione S-tr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848813/ https://www.ncbi.nlm.nih.gov/pubmed/36688005 http://dx.doi.org/10.1155/2023/4931650 |
Sumario: | Colorectal cancer is the second-leading cause of cancer-related mortality in the United States. Glutathione S-transferase can affect the development of cancer. Glutathione S-transferase omega 2, a member of the GST family, plays an important role in many tumors. However, the role of Glutathione S-transferase omega 2 in the development of colon cancer remains unclear. Herein, our study aimed to investigate the exact role of Glutathione S-transferase omega 2 in colon cancer. We used RNA sequencing data from The Cancer Genome Atlas and the Genotype-Tissue Expression database to analyze Glutathione S-transferase omega 2 expressions. Then, we explore the protein information of Glutathione S-transferase omega 2 in the Human Protein Atlas, GeneCards, and String database. In addition, western blot and immunohistochemistry were performed to evaluate the protein levels of Glutathione S-transferase omega 2 in colon cancer tissues. We acquire data from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Also, we performed relevant prognostic analyses of these data. In addition, we performed a statistical analysis of the clinical data from The Cancer Genome Atlas database and the expression level of Glutathione S-transferase omega 2. Then, we performed Cox regression analysis and found independent risk factors for prognosis in patients with colon cancer. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were used to explore the potential biological functions of Glutathione S-transferase omega 2. The infiltration of colon cancer-immune cells was evaluated by the CIBERSORT method. RNA silencing was performed using siRNA constructs in HCT-116 and HT-29 cell lines. Cell Counting Kit-8 and EdU assays were performed to determine cell proliferation. Transwell experiments and scratch tests were used to determine cell migration. As for the mRNA and protein expression levels of cells, we used quantitative real-time PCR and western blot to detect them. Our research shows that Glutathione S-transferase omega 2 is overexpressed in colon cancer patients, and this overexpression is associated with a poor prognosis. The high expression of Glutathione S-transferase omega 2 is significantly correlated stage with stage, M, and N classification progression in colon cancer by statistical analysis. Univariate and multivariate Cox regression analyses showed that Glutathione S-transferase omega 2 was an independent risk factor for poor prognosis in colon cancer. In addition, we also found that Glutathione S-transferase omega 2 expression levels can affect the immune microenvironment of colon cancer cells. Gene silencing of Glutathione S-transferase omega 2 in HT-29 and HCT-116 cells significantly inhibited tumor growth and migration. In summary, we found that Glutathione S-transferase omega 2 can be used as a molecular indicator of colon cancer prognosis. In vitro, gene silencing of Glutathione S-transferase omega 2 inhibited colon cancer cells' growth and migration. |
---|