Cargando…

A Simple Algorithm for Higher-Order Delaunay Mosaics and Alpha Shapes

We present a simple algorithm for computing higher-order Delaunay mosaics that works in Euclidean spaces of any finite dimensions. The algorithm selects the vertices of the order-k mosaic from incrementally constructed lower-order mosaics and uses an algorithm for weighted first-order Delaunay mosai...

Descripción completa

Detalles Bibliográficos
Autores principales: Edelsbrunner, Herbert, Osang, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849181/
https://www.ncbi.nlm.nih.gov/pubmed/36687803
http://dx.doi.org/10.1007/s00453-022-01027-6
Descripción
Sumario:We present a simple algorithm for computing higher-order Delaunay mosaics that works in Euclidean spaces of any finite dimensions. The algorithm selects the vertices of the order-k mosaic from incrementally constructed lower-order mosaics and uses an algorithm for weighted first-order Delaunay mosaics as a black-box to construct the order-k mosaic from its vertices. Beyond this black-box, the algorithm uses only combinatorial operations, thus facilitating easy implementation. We extend this algorithm to compute higher-order [Formula: see text] -shapes and provide open-source implementations. We present experimental results for properties of higher-order Delaunay mosaics of random point sets.