Cargando…
Explainable artificial intelligence for mental health through transparency and interpretability for understandability
The literature on artificial intelligence (AI) or machine learning (ML) in mental health and psychiatry lacks consensus on what “explainability” means. In the more general XAI (eXplainable AI) literature, there has been some convergence on explainability meaning model-agnostic techniques that augmen...
Autores principales: | Joyce, Dan W., Kormilitzin, Andrey, Smith, Katharine A., Cipriani, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849399/ https://www.ncbi.nlm.nih.gov/pubmed/36653524 http://dx.doi.org/10.1038/s41746-023-00751-9 |
Ejemplares similares
-
Personalised treatment for cognitive impairment in dementia: development and validation of an artificial intelligence model
por: Liu, Qiang, et al.
Publicado: (2022) -
Explainable vs. interpretable artificial intelligence frameworks in oncology
por: Bertsimas, Dimitris, et al.
Publicado: (2023) -
Explainability and Transparency of Classifiers for Air-Handling Unit Faults Using Explainable Artificial Intelligence (XAI)
por: Meas, Molika, et al.
Publicado: (2022) -
Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare
por: Ennab, Mohammad, et al.
Publicado: (2022) -
Towards Transparency by Design for Artificial Intelligence
por: Felzmann, Heike, et al.
Publicado: (2020)