Cargando…
N(2)-to-NH(3) conversion by excess electrons trapped in point vacancies on 5f-element dioxide surfaces
Ammonia (NH(3)) is one of the basic chemicals in artificial fertilizers and a promising carbon-free energy storage carrier. Its industrial synthesis is typically realized via the Haber−Bosch process using traditional iron-based catalysts. Developing advanced catalysts that can reduce the N(2) activa...
Autores principales: | Wang, Gaoxue, Batista, Enrique R., Yang, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849761/ https://www.ncbi.nlm.nih.gov/pubmed/36688046 http://dx.doi.org/10.3389/fchem.2022.1051496 |
Ejemplares similares
-
In-trap conversion electron spectroscopy
por: Weissman, L, et al.
Publicado: (2002) -
Trapping and detrapping of vacancies at $^{111}$In in quenched aluminium
por: Rinneberg, H, et al.
Publicado: (1977) -
Transforming solid-state precipitates via excess vacancies
por: Bourgeois, Laure, et al.
Publicado: (2020) -
Spin-Mechanics with Nitrogen-Vacancy Centers and Trapped Particles
por: Perdriat, Maxime, et al.
Publicado: (2021) -
Graphdiyne‐Induced Iron Vacancy for Efficient Nitrogen Conversion
por: Fang, Yan, et al.
Publicado: (2021)