Cargando…
LGBMDF: A cascade forest framework with LightGBM for predicting drug-target interactions
Prediction of drug-target interactions (DTIs) plays an important role in drug development. However, traditional laboratory methods to determine DTIs require a lot of time and capital costs. In recent years, many studies have shown that using machine learning methods to predict DTIs can speed up the...
Autores principales: | Peng, Yu, Zhao, Shouwei, Zeng, Zhiliang, Hu, Xiang, Yin, Zhixiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849804/ https://www.ncbi.nlm.nih.gov/pubmed/36687573 http://dx.doi.org/10.3389/fmicb.2022.1092467 |
Ejemplares similares
-
SAELGMDA: Identifying human microbe–disease associations based on sparse autoencoder and LightGBM
por: Wang, Feixiang, et al.
Publicado: (2023) -
Random Forest and LightGBM-Based Human Health Check for Medical Device Fault Detection
por: Wang, Weiwei
Publicado: (2022) -
Cascade Forest-Based Model for Prediction of RNA Velocity
por: Zeng, Zhiliang, et al.
Publicado: (2022) -
Predicting Metabolite–Disease Associations Based on LightGBM Model
por: Zhang, Cheng, et al.
Publicado: (2021) -
Retracted: Random Forest and LightGBM-Based Human Health Check for Medical Device Fault Detection
por: Healthcare Engineering, Journal of
Publicado: (2023)