Cargando…
Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer
OBJECTIVE: The aim of this study was to develop and validate a deep learning-based radiomic (DLR) model combined with clinical characteristics for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. For early prediction of pCR, the DLR model was based...
Autores principales: | Li, Yuting, Fan, Yaheng, Xu, Dinghua, Li, Yan, Zhong, Zhangnan, Pan, Haoyu, Huang, Bingsheng, Xie, Xiaotong, Yang, Yang, Liu, Bihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850142/ https://www.ncbi.nlm.nih.gov/pubmed/36686755 http://dx.doi.org/10.3389/fonc.2022.1041142 |
Ejemplares similares
-
Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
por: Braman, Nathaniel M., et al.
Publicado: (2017) -
Pretreatment DCE-MRI-Based Deep Learning Outperforms Radiomics Analysis in Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
por: Peng, Yunsong, et al.
Publicado: (2022) -
Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
por: Braman, Nathaniel M., et al.
Publicado: (2017) -
3T DCE-MRI Radiomics Improves Predictive Models of Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
por: Montemezzi, Stefania, et al.
Publicado: (2021) -
DCE-MRI radiomics nomogram can predict response to neoadjuvant chemotherapy in esophageal cancer
por: Qu, Jinrong, et al.
Publicado: (2022)