Cargando…

Alterations of resting-state networks of Parkinson‘s disease patients after subthalamic DBS surgery

The implantation of deep brain stimulation (DBS) electrodes in Parkinson’s disease (PD) patients can lead to a temporary improvement in motor symptoms, known as the stun effect. However, the network alterations induced by the stun effect are not well characterized. As therapeutic DBS is known to alt...

Descripción completa

Detalles Bibliográficos
Autores principales: Sure, Matthias, Mertiens, Sean, Vesper, Jan, Schnitzler, Alfons, Florin, Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850202/
https://www.ncbi.nlm.nih.gov/pubmed/36610312
http://dx.doi.org/10.1016/j.nicl.2023.103317
Descripción
Sumario:The implantation of deep brain stimulation (DBS) electrodes in Parkinson’s disease (PD) patients can lead to a temporary improvement in motor symptoms, known as the stun effect. However, the network alterations induced by the stun effect are not well characterized. As therapeutic DBS is known to alter resting-state networks (RSN) and subsequent motor symptoms in patients with PD, we aimed to investigate whether the DBS-related stun effect also modulated RSNs. Therefore, we analyzed RSNs of 27 PD patients (8 females, 59.0 +- 8.7 years) using magnetoencephalography and compared them to RSNs of 24 age-matched healthy controls (8 females, 62.8 +- 5.1 years). We recorded 30 min of resting-state activity two days before and one day after implantation of the electrodes with and without dopaminergic medication. RSNs were determined by use of phase-amplitude coupling between a low frequency phase and a high gamma amplitude and examined for differences between conditions (i.e., pre vs post surgery). We identified four RSNs across all conditions: sensory-motor, visual, fronto-occipital, and frontal. Each RSN was altered due to electrode implantation. Importantly, these changes were not restricted to spatially close areas to the electrode trajectory. Interestingly, pre-operative RSNs corresponded better with healthy control RSNs regarding the spatial overlap, although the stun effect is associated with motor improvement. Our findings reveal that the stun effect induced by implantation of electrodes exerts brain wide changes in different functional RSNs.