Cargando…
Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy
The automated analysis of nanoparticles, imaged by scanning electron microscopy, was implemented by a deep-learning (artificial intelligence) procedure based on convolutional neural networks (CNNs). It is possible to extract quantitative information on particle size distributions and particle shapes...
Autores principales: | Bals, Jonas, Epple, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850277/ https://www.ncbi.nlm.nih.gov/pubmed/36756420 http://dx.doi.org/10.1039/d2ra07812k |
Ejemplares similares
-
Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning
por: Gumbiowski, Nina, et al.
Publicado: (2023) -
Partial Scanning Transmission Electron Microscopy with Deep Learning
por: Ede, Jeffrey M., et al.
Publicado: (2020) -
Comparison and optimization of nanoscale extracellular vesicle imaging by scanning electron microscopy for accurate size-based profiling and morphological analysis
por: Cavallaro, Sara, et al.
Publicado: (2021) -
Resolution enhancement in scanning electron microscopy using deep learning
por: de Haan, Kevin, et al.
Publicado: (2019) -
Identifying and manipulating single atoms with scanning transmission electron microscopy
por: Susi, Toma
Publicado: (2022)