Cargando…
Quantitative Tomographic Laser Absorption Imaging of Atomic Potassium during Combustion of Potassium Chloride Salt and Biomass
[Image: see text] Gaseous potassium (K) species play an important role in biomass combustion processes, and imaging techniques are powerful tools to investigate the related gas-phase chemistry. Here, laser absorption imaging of gaseous atomic K in flames is implemented using tunable diode laser abso...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850413/ https://www.ncbi.nlm.nih.gov/pubmed/36584277 http://dx.doi.org/10.1021/acs.analchem.2c03890 |
Sumario: | [Image: see text] Gaseous potassium (K) species play an important role in biomass combustion processes, and imaging techniques are powerful tools to investigate the related gas-phase chemistry. Here, laser absorption imaging of gaseous atomic K in flames is implemented using tunable diode laser absorption spectroscopy at 769.9 nm and a high-speed complementary metal oxide semiconductor (CMOS) camera recording at 30 kfps. Atomic K absorption spectra are acquired for each camera pixel in a field of view of 28 × 28 mm at a rate of 100 Hz. The technique is used to determine the spatial distribution of atomic K concentration during the conversion of potassium chloride (KCl) salt and wheat straw particles in a laminar premixed CH(4)/air flame with an image pixel resolution of up to 120 μm. Due to axisymmetry in setup geometry and, consequently, atomic K distributions, the radial atomic K concentration fields could be reconstructed by one-dimensional tomography. For the KCl sample, the K concentration field was in excellent agreement with previous point measurements. In the case of wheat straw, atomic K concentrations of around 3 ppm were observed in a cylindrical flame during devolatilization. In the char conversion phase, a spherical layer of atomic K, with concentrations reaching 25 ppm, was found within 5 mm of the particle surface, while the concentration rapidly decreased to sub-ppm levels along the vertical axis. In both cases, a thin (∼1 mm) layer without any atomic K was observed in close vicinity to the particle, suggesting that the potassium was initially not released in its atomic form. |
---|