Cargando…

Determination of nine prohibited N-nitrosamines in cosmetic products by vortex-assisted dispersive liquid–liquid microextraction prior to gas chromatography-mass spectrometry

An analytical method for the simultaneous determination of nine prohibited N-nitrosamines in cosmetic products is presented. N-nitrosamines are banned compounds in cosmetic products due to their harmful effects. Therefore, these compounds are not intentionally added to these products but, however, s...

Descripción completa

Detalles Bibliográficos
Autores principales: Schettino, Lorenza, Benedé, Juan L., Chisvert, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850448/
https://www.ncbi.nlm.nih.gov/pubmed/36756441
http://dx.doi.org/10.1039/d2ra06553c
Descripción
Sumario:An analytical method for the simultaneous determination of nine prohibited N-nitrosamines in cosmetic products is presented. N-nitrosamines are banned compounds in cosmetic products due to their harmful effects. Therefore, these compounds are not intentionally added to these products but, however, small amounts of them may be present due to unintentional causes, and thus sensitive methods for their analytical control are required. The proposed method is based on vortex-assisted dispersive liquid–liquid microextraction (VA-DLLME) to extract and preconcentrate the analytes, followed by gas chromatography-mass spectrometry (GC-MS) for their determination. The variables involved in the VA-DLLME process were optimized by using a Box–Behnken design and, due to the different polarity of the N-nitrosamines studied, several approaches for sample treatment were compared to achieve the best results. The method was successfully validated, showing a good linearity at least up to 20 ng mL(−1), enrichment factors from 2 to 100 depending on the target analyte, limits of detection and quantification at the low μg kg(−1) level, and good repeatability values (<13%). Finally, the proposed analytical method was applied to the determination of N-nitrosamines in commercial cosmetic samples of different nature, avoiding the matrix effect by means of standard addition calibration. Significant amounts of some of the N-nitrosamines, even exceeding the established regulatory limit, were found in the samples. The resulting method is fast, simple, and affordable to carry out the quality control of cosmetic products to ensure consumer safety for most laboratories.