Cargando…
Latent Biases in Machine Learning Models for Predicting Binding Affinities Using Popular Data Sets
[Image: see text] Drug design involves the process of identifying and designing molecules that bind well to a given receptor. A vital computational component of this process is the protein–ligand interaction scoring functions that evaluate the binding ability of various molecules or ligands with a g...
Autores principales: | Kanakala, Ganesh Chandan, Aggarwal, Rishal, Nayar, Divya, Priyakumar, U. Deva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850481/ https://www.ncbi.nlm.nih.gov/pubmed/36687059 http://dx.doi.org/10.1021/acsomega.2c06781 |
Ejemplares similares
-
PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications
por: Korlepara, Divya B., et al.
Publicado: (2022) -
Artificial intelligence: machine learning for chemical sciences
por: Karthikeyan, Akshaya, et al.
Publicado: (2021) -
PREHOST: Host prediction of coronaviridae family using machine learning
por: Chaturvedi, Anusha, et al.
Publicado: (2023) -
Machine Learning Based Clinical Decision Support System for Early COVID-19 Mortality Prediction
por: Karthikeyan, Akshaya, et al.
Publicado: (2021) -
MEMES: Machine learning framework for Enhanced MolEcular Screening
por: Mehta, Sarvesh, et al.
Publicado: (2021)