Cargando…

NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics

BACKGROUND: Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an H...

Descripción completa

Detalles Bibliográficos
Autores principales: Abayazeed, Aly H, Abbassy, Ahmed, Müeller, Michael, Hill, Michael, Qayati, Mohamed, Mohamed, Shady, Mekhaimar, Mahmoud, Raymond, Catalina, Dubey, Prachi, Nael, Kambiz, Rohatgi, Saurabh, Kapare, Vaishali, Kulkarni, Ashwini, Shiang, Tina, Kumar, Atul, Andratschke, Nicolaus, Willmann, Jonas, Brawanski, Alexander, De Jesus, Reordan, Tuna, Ibrahim, Fung, Steve H, Landolfi, Joseph C, Ellingson, Benjamin M, Reyes, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850874/
https://www.ncbi.nlm.nih.gov/pubmed/36685009
http://dx.doi.org/10.1093/noajnl/vdac184
_version_ 1784872279412310016
author Abayazeed, Aly H
Abbassy, Ahmed
Müeller, Michael
Hill, Michael
Qayati, Mohamed
Mohamed, Shady
Mekhaimar, Mahmoud
Raymond, Catalina
Dubey, Prachi
Nael, Kambiz
Rohatgi, Saurabh
Kapare, Vaishali
Kulkarni, Ashwini
Shiang, Tina
Kumar, Atul
Andratschke, Nicolaus
Willmann, Jonas
Brawanski, Alexander
De Jesus, Reordan
Tuna, Ibrahim
Fung, Steve H
Landolfi, Joseph C
Ellingson, Benjamin M
Reyes, Mauricio
author_facet Abayazeed, Aly H
Abbassy, Ahmed
Müeller, Michael
Hill, Michael
Qayati, Mohamed
Mohamed, Shady
Mekhaimar, Mahmoud
Raymond, Catalina
Dubey, Prachi
Nael, Kambiz
Rohatgi, Saurabh
Kapare, Vaishali
Kulkarni, Ashwini
Shiang, Tina
Kumar, Atul
Andratschke, Nicolaus
Willmann, Jonas
Brawanski, Alexander
De Jesus, Reordan
Tuna, Ibrahim
Fung, Steve H
Landolfi, Joseph C
Ellingson, Benjamin M
Reyes, Mauricio
author_sort Abayazeed, Aly H
collection PubMed
description BACKGROUND: Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an HGG volumetric measurement and visualization AI algorithm that is generalizable and repeatable. METHODS: A single 3D-Convoluted Neural Network, NS-HGlio, to analyze HGG on MRIs using 5-fold cross validation was developed using retrospective (557 MRIs), multicentre (38 sites) and multivendor (32 scanners) dataset divided into training (70%), validation (20%), and testing (10%). Six neuroradiologists created the ground truth (GT). Additional Internal validation (IV, three institutions) using 70 MRIs, and External validation (EV, single institution) using 40 MRIs through measuring the Dice Similarity Coefficient (DSC) of Enh., Ed. ,and Enh. + Ed. (WholeLesion/WL) tumor tissue and repeatability testing on 14 subjects from the TCIA MGH-QIN-GBM dataset using volume correlations between timepoints were performed. RESULTS: IV Preoperative median DSC Enh. 0.89 (SD 0.11), Ed. 0.88 (0.28), WL 0.88 (0.11). EV Preoperative median DSC Enh. 0.82 (0.09), Ed. 0.83 (0.11), WL 0.86 (0.06). IV Postoperative median DSC Enh. 0.77 (SD 0.20), Ed 0.78. (SD 0.09), WL 0.78 (SD 0.11). EV Postoperative median DSC Enh. 0.75 (0.21), Ed 0.74 (0.12), WL 0.79 (0.07). Repeatability testing; Intraclass Correlation Coefficient of 0.95 Enh. and 0.92 Ed. CONCLUSION: NS-HGlio is accurate, repeatable, and generalizable. The output can be used for visualization, documentation, treatment response monitoring, radiation planning, intra-operative targeting, and estimation of Residual Tumor Volume among others.
format Online
Article
Text
id pubmed-9850874
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98508742023-01-20 NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics Abayazeed, Aly H Abbassy, Ahmed Müeller, Michael Hill, Michael Qayati, Mohamed Mohamed, Shady Mekhaimar, Mahmoud Raymond, Catalina Dubey, Prachi Nael, Kambiz Rohatgi, Saurabh Kapare, Vaishali Kulkarni, Ashwini Shiang, Tina Kumar, Atul Andratschke, Nicolaus Willmann, Jonas Brawanski, Alexander De Jesus, Reordan Tuna, Ibrahim Fung, Steve H Landolfi, Joseph C Ellingson, Benjamin M Reyes, Mauricio Neurooncol Adv Clinical Investigations BACKGROUND: Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an HGG volumetric measurement and visualization AI algorithm that is generalizable and repeatable. METHODS: A single 3D-Convoluted Neural Network, NS-HGlio, to analyze HGG on MRIs using 5-fold cross validation was developed using retrospective (557 MRIs), multicentre (38 sites) and multivendor (32 scanners) dataset divided into training (70%), validation (20%), and testing (10%). Six neuroradiologists created the ground truth (GT). Additional Internal validation (IV, three institutions) using 70 MRIs, and External validation (EV, single institution) using 40 MRIs through measuring the Dice Similarity Coefficient (DSC) of Enh., Ed. ,and Enh. + Ed. (WholeLesion/WL) tumor tissue and repeatability testing on 14 subjects from the TCIA MGH-QIN-GBM dataset using volume correlations between timepoints were performed. RESULTS: IV Preoperative median DSC Enh. 0.89 (SD 0.11), Ed. 0.88 (0.28), WL 0.88 (0.11). EV Preoperative median DSC Enh. 0.82 (0.09), Ed. 0.83 (0.11), WL 0.86 (0.06). IV Postoperative median DSC Enh. 0.77 (SD 0.20), Ed 0.78. (SD 0.09), WL 0.78 (SD 0.11). EV Postoperative median DSC Enh. 0.75 (0.21), Ed 0.74 (0.12), WL 0.79 (0.07). Repeatability testing; Intraclass Correlation Coefficient of 0.95 Enh. and 0.92 Ed. CONCLUSION: NS-HGlio is accurate, repeatable, and generalizable. The output can be used for visualization, documentation, treatment response monitoring, radiation planning, intra-operative targeting, and estimation of Residual Tumor Volume among others. Oxford University Press 2022-12-20 /pmc/articles/PMC9850874/ /pubmed/36685009 http://dx.doi.org/10.1093/noajnl/vdac184 Text en © The Author(s) 2022. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Clinical Investigations
Abayazeed, Aly H
Abbassy, Ahmed
Müeller, Michael
Hill, Michael
Qayati, Mohamed
Mohamed, Shady
Mekhaimar, Mahmoud
Raymond, Catalina
Dubey, Prachi
Nael, Kambiz
Rohatgi, Saurabh
Kapare, Vaishali
Kulkarni, Ashwini
Shiang, Tina
Kumar, Atul
Andratschke, Nicolaus
Willmann, Jonas
Brawanski, Alexander
De Jesus, Reordan
Tuna, Ibrahim
Fung, Steve H
Landolfi, Joseph C
Ellingson, Benjamin M
Reyes, Mauricio
NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics
title NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics
title_full NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics
title_fullStr NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics
title_full_unstemmed NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics
title_short NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics
title_sort ns-hglio: a generalizable and repeatable hgg segmentation and volumetric measurement ai algorithm for the longitudinal mri assessment to inform rano in trials and clinics
topic Clinical Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850874/
https://www.ncbi.nlm.nih.gov/pubmed/36685009
http://dx.doi.org/10.1093/noajnl/vdac184
work_keys_str_mv AT abayazeedalyh nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT abbassyahmed nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT muellermichael nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT hillmichael nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT qayatimohamed nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT mohamedshady nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT mekhaimarmahmoud nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT raymondcatalina nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT dubeyprachi nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT naelkambiz nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT rohatgisaurabh nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT kaparevaishali nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT kulkarniashwini nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT shiangtina nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT kumaratul nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT andratschkenicolaus nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT willmannjonas nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT brawanskialexander nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT dejesusreordan nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT tunaibrahim nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT fungsteveh nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT landolfijosephc nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT ellingsonbenjaminm nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics
AT reyesmauricio nshglioageneralizableandrepeatablehggsegmentationandvolumetricmeasurementaialgorithmforthelongitudinalmriassessmenttoinformranointrialsandclinics