Cargando…
Biologically-inspired neuronal adaptation improves learning in neural networks
Since humans still outperform artificial neural networks on many tasks, drawing inspiration from the brain may help to improve current machine learning algorithms. Contrastive Hebbian learning (CHL) and equilibrium propagation (EP) are biologically plausible algorithms that update weights using only...
Autores principales: | Kubo, Yoshimasa, Chalmers, Eric, Luczak, Artur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851208/ https://www.ncbi.nlm.nih.gov/pubmed/36685291 http://dx.doi.org/10.1080/19420889.2022.2163131 |
Ejemplares similares
-
Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework
por: Kubo, Yoshimasa, et al.
Publicado: (2022) -
Predictive Neuronal Adaptation as a Basis for Consciousness
por: Luczak, Artur, et al.
Publicado: (2022) -
Neurons learn by predicting future activity
por: Luczak, Artur, et al.
Publicado: (2022) -
Learning-induced reorganization of number neurons and emergence of numerical representations in a biologically inspired neural network
por: Mistry, Percy K., et al.
Publicado: (2023) -
Effectiveness of Biologically Inspired Neural Network Models in Learning and Patterns Memorization
por: Squadrani, Lorenzo, et al.
Publicado: (2022)