Cargando…
Improving the performance of single-cell RNA-seq data mining based on relative expression orderings
The advent of single-cell RNA-sequencing (scRNA-seq) provides an unprecedented opportunity to explore gene expression profiles at the single-cell level. However, gene expression values vary over time and under different conditions even within the same cell. There is an urgent need for more stable an...
Autores principales: | Chen, Yuanyuan, Zhang, Hao, Sun, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851298/ https://www.ncbi.nlm.nih.gov/pubmed/36528803 http://dx.doi.org/10.1093/bib/bbac556 |
Ejemplares similares
-
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022) -
Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids
por: Wang, Yu Mei, et al.
Publicado: (2023) -
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
por: Lei, Tianyuan, et al.
Publicado: (2023)