Cargando…
RNAlight: a machine learning model to identify nucleotide features determining RNA subcellular localization
Different RNAs have distinct subcellular localizations. However, nucleotide features that determine these distinct distributions of lncRNAs and mRNAs have yet to be fully addressed. Here, we develop RNAlight, a machine learning model based on LightGBM, to identify nucleotide k-mers contributing to t...
Autores principales: | Yuan, Guo-Hua, Wang, Ying, Wang, Guang-Zhong, Yang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851306/ https://www.ncbi.nlm.nih.gov/pubmed/36464487 http://dx.doi.org/10.1093/bib/bbac509 |
Ejemplares similares
-
GP(4): an integrated Gram-Positive Protein Prediction Pipeline for subcellular localization mimicking bacterial sorting
por: Grasso, Stefano, et al.
Publicado: (2020) -
TACOS: a novel approach for accurate prediction of cell-specific long noncoding RNAs subcellular localization
por: Jeon, Young-Jun, et al.
Publicado: (2022) -
Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients
por: Wang, Zihao, et al.
Publicado: (2021) -
RNAdegformer: accurate prediction of mRNA degradation at nucleotide resolution with deep learning
por: He, Shujun, et al.
Publicado: (2023) -
Three-nucleotide periodicity of nucleotide diversity in a population enables the identification of open reading frames
por: Jiang, Mengyun, et al.
Publicado: (2022)