Cargando…
Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell po...
Autores principales: | Cheng, Andrew, Hu, Guanyu, Li, Wei Vivian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851325/ https://www.ncbi.nlm.nih.gov/pubmed/36410733 http://dx.doi.org/10.1093/bib/bbac475 |
Ejemplares similares
-
SPCS: a spatial and pattern combined smoothing method for spatial transcriptomic expression
por: Liu, Yusong, et al.
Publicado: (2022) -
Systematic benchmarking of statistical methods to assess differential expression of circular RNAs
por: Buratin, Alessia, et al.
Publicado: (2023) -
Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data
por: Junttila, Sini, et al.
Publicado: (2022) -
Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data
por: Sidorczuk, Katarzyna, et al.
Publicado: (2022) -
Benchmarking network-based gene prioritization methods for cerebral small vessel disease
por: Zhang, Huayu, et al.
Publicado: (2021)