Cargando…
spaCI: deciphering spatial cellular communications through adaptive graph model
Cell–cell communications are vital for biological signalling and play important roles in complex diseases. Recent advances in single-cell spatial transcriptomics (SCST) technologies allow examining the spatial cell communication landscapes and hold the promise for disentangling the complex ligand–re...
Autores principales: | Tang, Ziyang, Zhang, Tonglin, Yang, Baijian, Su, Jing, Song, Qianqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851335/ https://www.ncbi.nlm.nih.gov/pubmed/36545790 http://dx.doi.org/10.1093/bib/bbac563 |
Ejemplares similares
-
SpaRx: elucidate single-cell spatial heterogeneity of drug responses for personalized treatment
por: Tang, Ziyang, et al.
Publicado: (2023) -
Deciphering signatures of natural selection via deep learning
por: Qin, Xinghu, et al.
Publicado: (2022) -
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022) -
SWEET: a single-sample network inference method for deciphering individual features in disease
por: Chen, Hsin-Hua, et al.
Publicado: (2023) -
cropCSM: designing safe and potent herbicides with graph-based signatures
por: Pires, Douglas E V, et al.
Publicado: (2022)