Cargando…

Sleep does not influence schema-facilitated motor memory consolidation

STUDY OBJECTIVES: Novel information is rapidly learned when it is compatible with previous knowledge. This “schema” effect, initially described for declarative memories, was recently extended to the motor memory domain. Importantly, this beneficial effect was only observed 24 hours–but not immediate...

Descripción completa

Detalles Bibliográficos
Autores principales: Reverberi, Serena, Dolfen, Nina, Van Roy, Anke, Albouy, Genevieve, King, Bradley R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851548/
https://www.ncbi.nlm.nih.gov/pubmed/36656898
http://dx.doi.org/10.1371/journal.pone.0280591
Descripción
Sumario:STUDY OBJECTIVES: Novel information is rapidly learned when it is compatible with previous knowledge. This “schema” effect, initially described for declarative memories, was recently extended to the motor memory domain. Importantly, this beneficial effect was only observed 24 hours–but not immediately–following motor schema acquisition. Given the established role of sleep in memory consolidation, we hypothesized that sleep following the initial learning of a schema is necessary for the subsequent rapid integration of novel motor information. METHODS: Two experiments were conducted to investigate the effect of diurnal and nocturnal sleep on schema-mediated motor sequence memory consolidation. In Experiment 1, participants first learned an 8-element motor sequence through repeated practice (Session 1). They were then afforded a 90-minute nap opportunity (N = 25) or remained awake (N = 25) before learning a second motor sequence (Session 2) which was highly compatible with that learned prior to the sleep/wake interval. Experiment 2 was similar; however, Sessions 1 and 2 were separated by a 12-hour interval that included nocturnal sleep (N = 28) or only wakefulness (N = 29). RESULTS: For both experiments, we found no group differences in motor sequence performance (reaction time and accuracy) following the sleep/wake interval. Furthermore, in Experiment 1, we found no correlation between sleep features (non-REM sleep duration, spindle and slow wave activity) and post-sleep behavioral performance. CONCLUSIONS: The results of this research suggest that integration of novel motor information into a cognitive-motor schema does not specifically benefit from post-learning sleep.